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Abstract 
The in vitro vascular tissue engineering paradigm seeks to produce biologically responsive 

vascular substitutes using cells, biodegradable scaffolds, and bioreactors to mature the tissue 

for the potential treatment of vascular occlusions and to create 3D tissue models for pre-

clinical testing. In this work, a poly (ester amide) (PEA) derived from from L-phenylalanine, 

sebacoyl chloride and 1,4 butanediol was synthesized and electrospun to form both 3D 

fibrous mats and tubular constructs. Both the polymer solution concentration and mandrel 

rotation speed were optimized to fabricate bead-free fibres. Cytocompatibility and 

proliferation studies using mesenchymal progenitor 10T1/2 cells showed PEA fibres were 

not cytotoxic and were able to support proliferation for 14 days. 10T1/2 cells demonstrated 

increased attachment and spreading for up to 7 days on fibrous mats but perfusion bioreactor 

studies on tubular scaffolds did not demonstrate sufficient cell infiltration. 10T1/2 cell 

differentiation studies using qPCR and Western blot showed a TGFβ1 induced upregulation 

in both the gene and protein expression of vascular smooth muscle cell (VSMC) specific 

markers smooth muscle alpha-actin (SM-𝛼–actin) and smooth muscle myosin heavy chain 

(SM-MHC) on PEA fibres, with the differentiation further confirmed using 

immunofluorescence staining. Overall, this in vitro model of 10T1/2 cell differentiation may 

serve as a potential platform to fabricate small-diameter tissue engineered vascular grafts.   

Keywords 

poly (ester amide), 10T1/2 cells, differentiation, electrospinning, vascular smooth muscle cells, 

TGFβ1 
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Chapter 1  

1 Introduction 

  Scope 

Diseases of the cardiovascular system are the second leading cause of death in Canada, 

with coronary artery disease (CAD) being the most prevalent vascular condition.1 

Notwithstanding improved outcomes for percutaneous coronary interventions (PCI) and 

autologous coronary artery bypass grafts (CABG) using saphenous veins (SV) or internal 

mammary arteries (IMA), elderly patients with pre-existing vascular disorders such as 

varicose veins or previous vessel harvest may not  have suitable grafts for this procedure.2  

Synthetic grafts composed of Poly (ethylene terephthalate) (PET®, Dacron) and expanded 

poly(tetrafluoroethylene) (ePTFE, Gore-Tex®) can be used as an alternative, however they 

exhibit reduced patency rates and an increased risk for intimal hyperplasia (IH) due to 

mechanical mismatch with the native coronary artery.3 Moreover, their lack of 

biodegradability renders these grafts unable to support tissue remodeling and regeneration, 

thus limiting their use for pediatric patients who require grafts which can grow and remodel 

during normal development. 4 

The shortcomings of these interventions led to active and prolific research in the field of 

vascular tissue engineering. The intent is to produce biologically and mechanically 

responsive vascular substitutes that can mimic the properties of the native vessel. In the 

most frequently utilized tissue engineering paradigm, cells are seeded onto a biodegradable 

scaffold, mimicking the native extracellular matrix (ECM) environment and matured in a 
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bioreactor.5  The scaffold acts as a temporary support structure for the cells to infiltrate the 

porous three dimensional (3D) scaffold, while secreting and assembling their own ECM 

proteins. In a bioreactor that simulates the hemodynamic environment, the construct 

matures  into a functional tissue.5 The use of adult stem cells is a promising alternative to 

primary vascular smooth muscle cells (VSMC) and endothelial cells (ECs) due to their 

increased proliferative capacity compared to differentiated primary cells, their ability to 

differentiate into VSMC and EC lineages with the addition of soluble growth factors,6 and 

their ability to circumvent the ethical concerns surrounding the use of embryonic stem 

cells. Tissue engineered vascular graft (TEVG) studies using bone marrow mononuclear 

cells (BM-MNC), bone marrow mesenchymal stem cells  (BM-MSC) and synthetic 

polymers such polyglycolic acids (PGA), polylactic acid (PLA), and their hybrids have 

been widely reported,7,8,9  however, their degradation products include acidic by-products 

that may be cytotoxic and have been shown to negatively affect vascular smooth muscle 

phenotype. 10 Poly (ester amide) s (PEAs), are a class of synthetic biomaterials which 

contain both acidic and basic degradation products, providing a buffering effect and 

limiting the downward pH drift.11 PEAs derived from naturally occurring 𝛼-amino acids 

have been investigated for vascular tissue engineering and gene and drug delivery 

applications12,13; however, the majority of these studies have used differentiated vascular 

cells. 11,14 C3H10T1/2 cells, commonly referred to as 10T1/2 cells, are a clonal cell line 

derived from 14-17 day old mouse embryos, and are commonly used as an in vitro model 

for VSMC differentiation studies due to their undemanding culture conditions and their 

ability to differentiate to VSMC in 2D culture using only one growth factor, TGFβ1.15  
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Thus, the objective of this work is to study the cell-material interactions of 10T1/2 cells on 

nanofibrous PEA scaffolds as well as their differentiation into a vascular smooth muscle 

lineage and to study cell infiltration in 3D tubular electrospun scaffolds, towards 

fabricating a small diameter vascular graft. 

 Thesis outline 

This thesis consists of 5 chapters. Chapter 1 provides a brief introduction to the work. 

Chapter 2 introduces discusses the importance of vascular tissue engineering, scaffold 

fabrication methods and relevant stem cell differentiation studies for vascular tissue 

engineering applications, with specific objectives of this work provided at the end of 

Chapter 2. Chapter 3 details the experimental procedures, while Chapter 4 presents the 

results and discusses the results of this study. Finally, a summary of the important 

findings, the strengths and limitations of the study, and future directions are summarized 

in Chapter 5. 
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Chapter 2  

2 Literature review  

 Paradigms of tissue engineering 

Tissue engineering is an interdisciplinary field which combines engineering principles and 

life sciences to construct biological substitutes that can repair, replace, or regenerate 

damaged tissues.5 The four most commonly adopted approaches in this field are cell 

transplantation, scaffold transplantation, cell-loaded scaffold implantation, and in vitro 

tissue engineering.5 

Cell transplantation is a minimally invasive approach in which cells are introduced directly 

into the host tissue without the use of a scaffold or a bioreactor. For instance, in myocardial 

tissue engineering, cardiomyoctes (mature contracting heart cells) or adult mesenchymal 

stem cells (MSCs) can be injected to repair the damaged myocardium following a 

myocardial infarction, or heart attack.5 Though this is the simplest and least invasive of the 

four paradigms, the primary drawback of this procedure is host immune rejection, if the 

patient’s cells are not used for this procedure.  Additionally, it is difficult to ensure that 

cells alone will regenerate a functional tissue, as the cells need to integrate into the damaged 

tissue and secrete extracellular matrix proteins.  

Immunosuppressant drugs are often utilized in conjunction with this procedure to 

overcome host immune rejection16 however these drugs severely deplete immune function 

and may leave the patient highly vulnerable to infection.  
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Other techniques such as the use of immune suppressing molecules to protect human 

embryonic stem cells (hESCs) from immune rejection,17 and induced pluripotent stem cells 

(iPSCs), derived from the patient’s own cells 18 are being investigated to eliminate the use 

of immunosuppressant drugs.  

Scaffold transplantation relies on recruiting endogenous cells to the implanted material in 

order to regenerate damaged tissue. As an example, decellularized porcine pulmonary heart 

valves have been used as structural templates in which cells populate and remodel the 

scaffold to form a functional heart valve.19 The decellularization process involves the use 

of detergents to remove cellular material from a given tissue to isolate the connective tissue 

matrix, forming a 3D structure that can facilitate host cell recruitment and ingrowth.5 

Additionally, some heart valve regeneration strategies rely on the use of a resorbable matrix 

derived from natural or synthetic polymers to degrade and undergo in vivo remodeling to 

facilitate neotissue formation.20  Though these studies rely on the patient’s cells to populate 

the valve, implantation of a scaffold does not ensure cell recruitment,21 and failure to recruit 

cells to populate the valve results in graft failure. Synthetic vascular grafts are another 

example of scaffold transplantation,21 however these conduits are biostable and therefore 

unable to remodel in vivo, which may hinder their use in pediatric patients.  

Cell-seeded scaffold transplantation has been used to address some of the limitations of 

scaffold transplantation alone. Here, cells are seeded onto a scaffold, and implanted into 

the host omitting the in vitro bioreactor maturation step.5 Endothelial cell seeded vascular 

grafts are one example of this technique. These scaffolds are typically surface treated with 

proteins, such as fibronectin which will further promote cell attachment and maturation of 

the construct in vivo.22 Typical synthetic grafts for small-diameter blood vessels, such as 
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Dacron® and ePTFE, have reduced patency rates compared to saphenous vein and internal 

mammary artery grafts caused in part by a lack of endothelial cell (EC) lining. The EC 

lining exhibits vasoprotective properties such as the ability to secrete heparan sulfate, 

which acts as a cofactor in the activation of antithrombin, an enzyme which inhibits  

thrombosis.22 

Finally, the most commonly utilized paradigm is in vitro tissue engineering (Figure 2.1). 

Cells are seeded on a synthetic or naturally derived polymeric scaffold, and the construct 

is matured in vitro in a bioreactor simulating physiological conditions.5 The scaffold 

supports the cells while they proliferate, infiltrate, and synthesize their ECM proteins at 

which point the scaffold may degrade. The tissue is then implanted into the patient where 

further in vivo remodeling occurs as the construct integrates into the existing structure.  

 

Figure 2.1 in vitro tissue engineering paradigm 
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One of the first major breakthroughs in vascular tissue engineering was constructed by 

Weinberg and Bell in 1986 and utilized bovine smooth muscle cells cultured in gelatin. 23 

The outer surface was seeded with bovine smooth muscle cells and the inner layer was 

seeded with bovine endothelial cells to replicate the tunica adventitia and the tunica media, 

respectively.23 Though these grafts were able to exhibit the morphological properties of 

native arteries, they eventually required reinforcement with Dacron® sleeves as their 

mechanical properties (i.e. burst pressure, mechanical strength) were unable to maintain 

the physiological burst pressure conditions that would be encountered post-implantation. 

The burst pressure reached 323 mmHg, which is not suitable to withstand the 

hemodynamic environment, thus emphasizing the primary limitation of natural 

biomaterials in the fabrication of tissue engineered vascular grafts.  Despite this drawback, 

the results from this seminal work were encouraging and gave impetus to the vascular 

tissue engineering field. 

 Functional requirements of tissue engineered vascular grafts (TEVGs) 

In order to fabricate suitable grafts which can mimic the native tissue, TEVGs should have 

a burst pressure greater than 1,700 mmHg, which is equivalent to saphenous vein, the graft 

primarily used in CABG. Further, the graft must be physiologically compliant and be 

capable of withstanding hemodynamic stresses.24  The mechanical properties of the 

vessel are largely derived from two critical ECM proteins: collagen and elastin. 

Collagen maintains the structural integrity of the vessel, due to its high tensile strength. 

Elastin acts as a recoil protein and contributes to vascular compliance, and prevents 

vessel stenosis.25 Collagen synthesis has been observed in several TEVGs,26,27 

however promoting sufficient elastogenesis within tissue engineered vascular 



www.manaraa.com

8 

 

substitutes has been one of the most challenging obstacles to overcome in vascular 

tissue engineering research.28,29 TEVGs must also be nonthrombogenic, 

nonimmunogenic and easily suturable.30 Additionally, in order to scale up tissue 

fabrication, the fabrication process must be consistent, with negligible variation in 

compositional and mechanical properties.31 

 Why in vitro Vascular Tissue Engineering? 

The emergence of the vascular tissue engineering field has been primarily motivated by 

two factors: (i) the high incidence of cardiovascular diseases and the increasing need for 

bypass graft surgeries with the aging population and (ii) the increasing need for in vitro 

preclinical models for drug screening and studying physiological processes. 

 2.3.1 Clinical motivation: Cardiovascular Disease 

Cardiovascular diseases (CVDs), a term describing the disorders affecting the heart muscle, 

heart valves and systemic blood vessels, are the second leading cause of death in Canada 

and accounted for 20 percent of all deaths in 2011.1 It is estimated that 1.3 million 

Canadians are living with cardiovascular diseases, and more than 300,000 Canadians are 

hospitalized each year due to CVD incidents.32 In addition to its devastating effects, CVDs 

represent a major economic burden, with an estimated cost of 20.9 billion per year in 

hospital costs, lost wages, and decreased productivity.32 

Of all CVDs, coronary artery disease (CAD) is one of the most common and causes 

significant morbidity and mortality.1 The coronary artery is composed of three layers 

(Figure 2.2): (i)  the tunica intima, which consists of a layer of endothelial cells (EC) that 
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form a barrier between blood and the vessel well, and provide an anti-thrombogenic surface 

by secreting nitric oxide, a potent vasodilator.28 (ii) The tunica media, which is adjacent to 

the intimal layer and comprises of a densely packed layer of concentrically oriented 

vascular smooth muscle cells (VSMCs) and elastic fibres, and is separated from the intimal 

layer by elastic lamina. The tunica media is thicker in more contractile and elastic vessels 

such as the coronary artery, which need to maintain vascular tone to regulate blood pressure 

in response to hemodynamic stresses, therefore recapitulating the properties of this layer is 

of utmost importance in the design of TEVGs.28 (iii) The tunica adventitia layer, which 

consists of fibroblasts, fibrous connective tissues such as collagen, nerves, and capillaries. 

 

 

 

 

 

 

 

 

Figure 2.2 Blood vessel anatomy. Reprinted with permission from Waterhouse, 
A., Wise, S. G., Ng, M. K. C. & Weiss, A. S. Elastin as a nonthrombogenic 
biomaterial. Tissue Eng. Part B. Rev. 17, 93–99 (2011).160 Copyright © 2010, 
Mary Ann Liebert, Inc.  
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The primary cause of coronary artery occlusions is atherosclerosis, a condition in which 

plasma lipids, inflammatory cells and connective tissue aggregate to form plaque. The 

plaque initiates a progressive narrowing of the artery, resulting in insufficient blood flow 

to and from the heart. If a complete blockage forms in one or more of the coronary arteries, 

this portion of the heart tissue becomes deprived of oxygen, or ischemic, which leads to 

the death of cardiomyoctes. If blood flow is not restored, irreversible tissue death (necrosis) 

will occur, eventually causing a myocardial infarction, otherwise known as a heart attack.  

The two most common treatments for CAD consist of preventative measures and clinical 

interventions. Lifestyle changes such as increased physical activity and dietary changes are 

recommended by healthcare professionals to mitigate the risk factors of cardiovascular 

disease, such as blood pressure, diabetes and high cholesterol.33 Aside from lifestyle 

changes, the two primary clinical interventions used to treat coronary artery disease are 

percutaneous coronary intervention (PCI) and coronary artery bypass grafts (CABG). 34  

In PCI, a balloon is attached to a catheter and guided to the blocked coronary artery using 

X-ray fluoroscopy. The balloon is inflated at the blockage site, first, pushing the plaque 

aside to improve blood flow, then deploying a a stent to prevent the arterial wall from 

collapsing.33 Anticoagulant medications are often prescribed in conjunction with this 

procedure, as the stent may scratch the intimal lining of the artery, causing vessel damage, 

which induces excessive blood clot formation.33 Additionally, stents can produce an 

immunogenic reaction causing inflammatory cells to proliferate, which can occur in a  

condition known as intimal hyperplasia (IH), the thickening of the intimal layer of the 

blood vessel, eventually causing vessel restenosis (narrowing). In order to overcome this 
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limitation, drug eluting stents (DES) coated with polymers have been developed, to slowly 

release drugs that prevent the formation of scar tissue in the arterial lining.35   

Vascular smooth muscle phenotypic modulation can also lead to IH. VSMCs can exist 

along a continuum from their quiescent state, known as the contractile phenotype to a 

synthetic phenotype, characterized by proliferation, migration and ECM deposition. In 

response to vascular injury, such as the scratching of the endothelial layer of the blood 

vessel by a stent, the cells may suppress contractile genes and upregulate synthetic gene 

markers, to increase cell proliferation and migration to the injured site.  Once the injury 

has been repaired, the cells can downregulate synthetic markers to return to the quiescent 

phenotype, however if the phenotypic switching process is left uncontrolled, excessive 

proliferation and ECM deposition can lead to IH, causing stenosis, or narrowing, of the 

artery, which if left uncontrolled, could cause  a complete blockage.36 In view of this, 

controlling phenotypic plasticity to co-ordinate a proliferative phase to populate and 

remodel the construct, and a contractile phase, is crucial in the design of TEVGs.   

In bypass grafts, the synthetic graft or autologous saphenous vein or mammary artery is 

sutured to the artery to bypass the ischemic portion and provide new path for oxygen-rich 

blood to flow. The autologous grafts prevent the immunogenic response, however the vein 

graft is not able to withstand the high arterial pressures, resulting in graft failure and repeat 

revascularization. Additionally, this procedure requires two sites of injury: one to extract 

the graft and one to revascularize the ischemic tissue, increasing the morbidity of the 

procedure. Moreover, due to co-morbidities such as diabetes and hypertension, some older 

patients may not have suitable autologous grafts for the procedure.  
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Synthetic grafts such as Dacron and ePTFE may be used due their high burst pressures, 

particularly for larger arterial grafts (>6 mm internal diameter), however the mismatch in 

compliance at the anastomotic site between the native tissue and synthetic grafts causes 

turbulent blood flow, and increase the chance for restenosis in smaller diameter constructs 

(<6 mm internal diameter).  

Synthetic grafts are the standard treatment used in Fontan operations for pediatric patients 

with congenital heart defects, shown in Figure 2.3, whereby the inferior vena cava is 

connected directly to the pulmonary artery to bypass the malfunctioning right ventricle and 

supply venous return directly to the pulmonary system for oxygenation. Unfortunately, 

these constructs lack growth potential, which is an inconvenience to children who would 

need multiple procedures throughout their lifetime. 
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The first clinically used TEVG was reported in 2001 by Shinoka and colleagues.37  In this 

study, a 4-year-old girl received pulmonary artery reconstruction surgery, utilizing 

engineered vascular tissue fabricated from a tubular biodegradable poly(L-lactide-co-

caprolactone) (PLCL)  copolymer scaffolds reinforced with PGA mesh and the patient’s 

own venous cells seeded on the scaffold in vitro prior to implantation. No evidence of graft 

occlusion was observed after 7 months.  

 

Following this report, three pediatric patients underwent the same procedure. 38 One of the 

primary drawbacks of the procedure was the cell source, which required time consuming 

cell culture (8 to 12 weeks) prior to seeding and the use of xenoserum due to the presence 

of fetal bovine serum (FBS) in cell culture media, to prevent cellular dedifferentiation or 

host immunogenic response. 

Figure 2.3  TEVG as an extracardiac total cavopulmonary connection in the Fontan 
operation.38 Reprinted from  Patterson, J. T. et al. Tissue-engineered vascular grafts for use 
in the treatment of congenital heart disease: from the bench to the clinic and back again. 
Regen. Med. 7, 409–419 (2012). Copyright (2012) with permission from Future Medicine 
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In 2001, this research group began to use autologous bone marrow mononuclear cells (BM-

MNC) from the anterior superior spine, which were available on the day of surgery.  

TEVGs were implanted in 25 pediatric patients from ages 1 to 24 as extracardiac total 

cavopulmonary connections (Figure 2.3).39 Two follow ups were performed after surgery 

at 16.7 months39 and 5.8 years40 (mean follow up time) respectively, with no evidence of 

aneurysm formation, graft rupture, or graft infection at either time point. One patient was 

treated with anticoagulant medication for mural thrombosis and percutaneous angioplasty 

was performed on three patients experiencing graft stenosis.  Additionally, the graft’s 

diameters increased with time (110% ± 7 % of the implanted size), indicating the growth 

potential of the engineered tissue, 39 and late term results of the procedure showed that 40% 

of patients remained free of any daily medications. Sadly, four patients died, with none of 

the deaths graft-related.40It is also important to note that these grafts were sutured into the 

pulmonary circulation which has a much lower systolic pressure compared to  coronary 

arteries (20 to 30 mmHg during systole), which is less demanding than the higher-pressure 

environment of the coronary artery (100 to 140 mm Hg during systole).24  The first US 

clinical trial was approved in 2011 at Yale University, where six patients received TEVGs, 

with the first patient in the US receiving a TEVG in August 2011. 41 

Other research and development (R&D) companies, notably Cytograft® and Humacyte® 

have emerged since Shinoka’s publication in 2001.39 Cytograft® uses the TEBV blueprint 

fabricated by L’Heureux et al. 42 with autologous human fibroblasts producing sheets of 

tissue that were then rolled onto a stainless steel mandrel. The construction of the TEBV 

took 6–9 months and yielded robust vessels with burst strengths greater than 3,000 mmHg. 
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These grafts were utilized in clinical trials in Argentina and Poland as arteriovenous shunts 

for ten patients with end-stage renal disease, delivering promising results including graft 

patency over six months. 43 Humacyte® founded by Niklason and colleagues is a cell-based 

therapeutics company fabricating TEVGs for applications such as end-stage renal disease, 

using biodegradable grafts made with human allogenic or canine VSMCs grown on tubular 

PGA scaffolds. The constructs are then decellularized, to prevent immunogenic response, 

which maintains the newly synthesized ECM,44  with the newly formed construct named 

the human acellular vessel (HAV). Humacyte® recently commenced Phase III of their 

HUMANITY ® study in the U.S, Europe and Israel with 350 evaluable subjects, making it 

the largest study of any engineered vascular tissue to date.45  

Both of these are exciting breakthroughs in vascular tissue engineering and have the 

potential to be adapted to fabricate tissue engineered grafts for CAD patients, with 

Humacyte’s technique showing success in the canine CAD model. 44   

2.3.2 Diagnostic applications: 3D tissue model 

Although the clinical need for engineered vascular substitutes for patients with CVDs is 

the primary motivation for vascular tissue engineering, the majority of the constructs are 

not ready for clinical translation due to several regulatory factors which hinder the progress 

of tissue engineered constructs into the clinic. These factors  include safe harvesting of 

living cells from patients, cell survival and differentiation in the patient, cost, and 

reproducible cell production.46  

Notwithstanding these barriers to clinical translation, a need has been identified in the 

research community and the pharmaceutical industry for in vitro biomimetic vascular 
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substitutes for drug screening, 47 as well as vascular disease models, as these constructs can 

more accurately mimic the in vivo tissue microenvironment and the cell-cell and cell-

matrix interactions compared to conventionally used 2D tissue culture polystyrene plates 

(TCPS). 47 Additionally, unlike 2D culture, TEVGs are often cultured in environments 

simulating hemodynamic conditions (i.e. cyclic mechanical strain, pulsatile flow), which 

are known to have a significant impact on vascular cell response, including, but not limited 

to, cell proliferation, and the regulation of vascular smooth muscle phenotype. 48  

Although 2D flow-based endothelial cell models exist to overcome this limitation, the 

tubular geometry of the graft more accurately recapitulates the native structure of the 

vessel, which allows for assessment of intravascular devices, such as stents, and drug 

delivery models, 47 and the ability to construct physiologically relevant models of vascular 

diseases. While human vascular tissue is the most ideal model to study vascular 

therapeutics, this process is hindered by donor heterogeneity, tissue availability 49 and the 

inability to test directly on human subjects. Indeed, bovine and porcine vascular tissues are 

frequently used as models in pharmacological research, however species variability may 

limit the ability to extrapolate the results of intravascular or pharmacological studies to 

humans.50 Tissue engineered models of the medial and adventitial arterial layers were 

designed and investigated by L’Heureux et al. and LaFlamme et al., respectively.  

L’Heureux et al.51 fabricated tissue engineered vascular media (TEVM) using human 

vascular smooth muscle cells (VSMC), and tested the efficacy of known vasoactive agents  

on the contractility of their construct, which was exhibited by an increase in cytosolic 

Ca2+ concentration in response to these agents. LaFlamme et al.49 constructed a tissue 

engineered vascular adventitia (TEVA) and studied its effect in the regulation of vascular 
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tone. TEVGs comprised of vascular cells and ECM proteins, although simplified compared 

to the complex in vivo environment in which native blood vessels reside, can still provide 

a physiologically relevant, reproducible and high throughput construct that can be used to 

model vascular pathologies, such as atherosclerosis, and investigate disease progression 

and therapeutic outcomes. 52 

  Vascular tissue engineering components 

As mentioned previously, the key components of in vitro tissue engineering are the cells, 

the scaffold and the bioreactor. This section highlights the specific scaffold, bioreactor and 

cell source characteristics that are required to construct tissue engineered vascular grafts 

(TEVG), lists the specific components that can be utilized, and discusses the advantages 

and drawbacks of these elements.  

2.4.1  Cell source 

As mentioned previously, the cell sources that are traditionally employed in vascular tissue 

engineered constructs are differentiated primary cells. Differentiated primary cells are 

lineage-committed cells extracted from an animal (xenogenic source), a donor (allogenic 

source) or the patient (autologous source) and grown in vitro prior to implantation.  

The differentiated primary cell sources under consideration in vascular tissue engineering 

are endothelial cells (ECs), VSMCs and fibroblasts as these are the cells that line the 

intimal, medial and adventitial layers, respectively. Several TEVGs have been fabricated 

using these cells, with the most notable constructs fabricated by L’Heureux and Niklason’s 

groups respectively, and are highlighted in section 2.3.1.  
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The culture time for fabricating tissue-engineered vascular constructs is typically 6-9 

weeks. The long cell culture duration, is to ensure that the cells can generate sufficient 

ECM to mimic native arterial mechanical properties.25 VSMCs are required to undergo 

approximately 45-60 population doublings (PDs) to generate an adequate amount of 

ECM,26 however VSMCs can only proliferate for 10–30 PDs before undergoing 

senescence.25 VSMC senescence results in a decrease in cell proliferation and ECM 

deposition. 25  Overall, the inability to harvest a sufficient cell population using primary 

cells is a limiting step in the tissue engineering paradigm.  

Stem cells have emerged as an alternative cell source to address this limitation. 53 Stem 

cells are undifferentiated cells which have the capacity to self-renew and differentiate into 

daughter cells with specialized functions, with most stem cell populations categorized as 

pluripotent or multipotent.  Pluripotent stem cell populations, such as embryonic stem cells 

(ESCs) and induced pluripotent stem cells (iPSCs) are self-renewing and can differentiate 

into almost any cell and form all three germ lineages. ESCs, derived from the inner cell 

mass of the blastocyst, have the highest degree of plasticity and differentiation potential, 

however limitations such as ethical considerations and the potential for immune rejection 

due to allogenic cell sourcing often preclude their use.  

 

Induced pluripotent stem cells (iPSCs), developed by Yamanaka and colleagues 54 are a 

new and exciting stem cell source that have the potential to circumvent both the ethical and 

allogenic sourcing limitations. iPSCs are  derived from terminally differentiated cells 

which have been reprogrammed into pluripotent stem cells by including four specific 

transcription factors using viral vectors to force expression of genes that are responsible 
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for maintaining pluripotency in embryos, namely Oct3/4, Sox2, Klf4, and c-Myc. 

Moreover, both cell sources have been utilized for vascular tissue engineering applications, 

by differentiating into VSMCs in vitro  prior to culturing on 3-D nanofibrous PLGA/PLA 

scaffolds,55 PLLA scaffolds,56 and fibrin scaffolds,57 respectively. Despite these 

outstanding benefits, ethical considerations often inhibit the use of ESCs. Moreover, both 

ESCs and iPSCs bear the risk of forming germ cell tumours, or teratomas in vivo, which 

may exacerbate the problem rather than alleviate it. The efficiency of iPSCs is usually quite 

low (0.01-10% of primary cells used respond to forced gene expression) and the viral 

vectors used may transfect the genes anywhere in the genome, which could potentially 

silence the expression of a gene regulating cell division, potentially cause uncontrollable 

cell division resulting in cancer.58  

Multipotent stem cells (or adult stem cells) are an autologous stem cell source and have a 

more limited differentiating potential than pluripotent stem cells.59 The main function of 

adult stem cells is to maintain tissue homeostasis and replenish dying cells.59 Two types of 

adult stem cells exist: hematopoietic stem cells (HSCs) and mesenchymal stem cells 

(MSCs). HSCs are found in the bone marrow and differentiate into blood and lymphatic 

cells.60 MSCs differentiate into mesodermal layer tissues (ex. bone, cartilage, fat and 

muscle) and are of primary interest in vascular tissue engineering.  

The most common types of MSCs are bone marrow MSCs (BM-MSCs) and adipose stem 

cells (ASCs). BM-MSCs acquired by bone marrow aspiration are relatively rare, with 1 in 

10 000 cells from bone marrow aspirate are stem cells. 60 ASCs, acquired from adipose 

tissue by lipoaspiration are approximately 5000 times more abundant than BM-MSCs and 

have been explored as a cell source for vascular smooth muscle cells in TEVGs. 61  
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Before stem cells acquire their fully differentiated state, they develop an intermediate, 

partially differentiated cell type commonly referred to as precursor or progenitor cells. 59 

Progenitor cells are described as oligopotent or unipotent. Examples of these cell types 

include satellite cells, which play a role in muscle cell differentiation and response to 

injury60 and endothelial progenitor cells (EPCs), derived from bone marrow, which play a 

role in regenerating the endothelial lining of blood vessels, with the addition of specific 

growth factors. Additionally, immortalized progenitor cell lines such as A19 cells and 

mesenchymal progenitor C3H10T1/2 (10T1/2 cells) are frequently used for smooth muscle 

differentiation analysis. Studies using immortalized and human stem cells for vascular 

tissue engineering will be further discussed in section 2.6. 

2.4.2 Scaffolds 

Tissue engineered scaffolds are 3D structures fabricated from natural or synthetic 

biomaterials which mimic the topography of the ECM. Scaffolds act as a structural 

template for cells to synthesize their matrix proteins, thereby remodeling the construct and 

facilitating neo-tissue formation.62  

One of the most important and challenging factors influencing the success of TEVGs is the 

ability of the cells to remodel the tissue engineered construct, therefore understanding the 

characteristics of a suitable scaffold, the materials which can be used and the scaffold 

fabrication methods available are of vital importance.63 
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2.4.3 Ideal scaffold characteristics  

In order to design an optimal tissue engineered scaffold, a number of considerations need 

to be made, regardless of the specific tissue application. Firstly, and most importantly, the 

scaffold material must be biocompatible in order to support cell adhesion, migration and 

proliferation, and should be biodegradable to allow the cells to synthesize their own ECM 

and the degradation rate of the scaffold should occur at the same as tissue formation. The 

degradation by-products should be non-toxic have no adverse effects on cell behavior. In 

addition to biocompatibility, scaffolds should ideally be porous and interconnected 

structures to allow for cell ingrowth and nutrient diffusion, while maintaining mechanical 

properties specific to the native vascular environment.63,64 Many of these properties are 

highly dependent on the material used and the fabrication method chosen, which will be 

described in subsequent sections.  

2.4.4 Scaffold materials   

Scaffolds can be fabricated from naturally occurring or synthetic materials. Natural 

polymers such as collagen65, fibrin,66,24 and elastin,67 among others, are integral ECM 

proteins and have been extensively studied as scaffold materials for vascular tissue 

engineered constructs.  

These polymers are found in the human body, and therefore are highly biocompatible, have 

very low toxicity, and a decreased probability of immune rejection.68 Biological scaffolds 

contain adhesive Arg-Gly-Asp (RGD) peptides which bind to integrin receptors on the cell 

surface, facilitating cell adhesion and interaction with the scaffold material.69 The primary 

limitation of natural materials is their rapid degradation in vivo following implantation due, 
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in part, to the difficulty in modifying their chemical structure in order to incorporate 

functionality and mechanical strength.70 Chemical crosslinking has been used to address 

this limitation, however the use of harsh solvents such as gluteraldehyde may increase the 

toxicity of the scaffold.71   

Decellularized scaffolds are another type of naturally derived scaffold. As described in 

Section 2.1, decellularization involves the removal of cellular material from an allogenic 

or xenogenic vascular conduits using detergents, removing potentially immunogenic cells 

and leaving behind the native extracellular matrix environment. The matrix can then be 

recellularized and implanted directly into the host or placed in a bioreactor until maturation. 

Providing cells with their tissue-specific matrix is advantageous, as it has been shown to 

play a crucial role in controlling stem cell fate,72 however this technique does pose 

limitations as well, such as disease transmission due to xenogenic sourcing73 and the 

potential removal of proteoglycans. 74 

Synthetic scaffolds have been extensively studied for vascular tissue engineering 

applications due to their superior mechanical properties, wide availability and potential for 

scale-up production.75 Polyurethanes and biodegradable aliphatic polyesters composed of 

PLA , PGA, poly- L-lactic acid (PLLA), poly-𝜀–caprolactone (PCL), and their copolymers, 

are the most frequently utilized materials. PGAs have been used as sutures,76 vascular 

tissue engineering scaffolds,77 and neo-urinary conduits78 among other clinical 

applications. Indeed, the first clinically utilized vascular graft was fabricated using a  poly-

l-lactic acid/poly-𝜀-caprolactone (PLCL) copolymer.37 
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Notwithstanding their superior mechanical properties and biocompatibility, synthetic 

materials are not bioactive and cannot provide the complex biochemical cell-ECM 

interactions required for cell proliferation and tissue remodeling long-term. In order to 

address this, methods to adsorb cell adhesion peptides to scaffold surfaces79 and to fabricate 

biomimetic scaffolds, by functionalizing synthetic polyesters in order to incorporate 

peptides and growth factors into the polymer backbone have been developed.80,81,14 

In addition to synthetic scaffolds’ inherent lack of bioactivity, PGA, PLA and their 

copolymers have been shown to produce acidic degradation products that create localized 

regions of low pH, which are cytotoxic and may contribute to an unmitigated phenotype 

switching of vascular smooth muscle cells from a functional, contractile phenotype to a 

proliferative, synthetic phenotype10 which if uncontrolled, could lead to to vessel 

narrowing and intimal hyperplasia in vivo.82 Moreover, due to their synthesis from one 

monomer, polyesters do not possess tunable degradation characteristics. Copolymerization 

of polymers or blending is often adopted to make these materials more tunable, however 

these methods are not always successful.83  

Poly(ester amide)s (PEAs) derived from 𝛼-amino acids are a newer class of synthetic 

copolymers being considered for vascular tissue engineering11,84 to overcome the 

limitations of aliphatic polyesters. The PEAs used in this work consist of an amino acid, 

an alcohol and a diacid, and bear ester and amide repeat units.  As these units can be 

introduced using a variety of starting materials, the term PEA is more generic rather than 

specific. PEAs can be degraded both hydrolytically and enzymatically84 and their 

degradation products contain both acidic and basic by-products, in addition to 𝛼-amino 

acids which are found in the body limiting both the toxicity and the downward pH drift 
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exhibited in aliphatic polyesters.85 PEAs have been shown to exhibit a surface degradation 

mechanism, meaning that the mass loss kinetics are linear and the molecular weight 

remains unchanged over time.11 This linear degradation rate will facilitate tissue 

remodeling and regeneration by allowing enough time for the cells to synthesize their 

matrix proteins and remodel the scaffold, while the constant molecular weight and linear 

mass loss indicates that the mechanical properties of the scaffold will not be dramatically 

altered during the degradation process.11   

As previously mentioned, PEAs derived from naturally occurring 𝛼-amino acids have been 

investigated for vascular tissue engineering applications.13 Karimi et al.86 developed a class 

of PEAs derived from 1,4-butanediol, 1,6-hexanediol, and sebacic acid by interfacial 

polymerization using, L-phenylalanine and L-methionine as 𝛼-amino acids. Vascular 

smooth muscle cells cultured on the PEA films exhibited a well-spread morphology, and 

the scaffolds fabricated using 1,6 hexanediol and L-methionine, and 1,4 butanediol  

demonstrated high porosity and interconnectivity, indicating the potential for PEAs to be 

viable scaffold biomaterials for vascular tissue engineering. Following this, PEA films 

functionalized with amine and carboxylic groups were investigated by Horwitz et al. 84 for 

endothelial cell biocompatibility, proliferation and inflammatory response. They  

concluded that the PEA films were noncytotoxic over 72 hours and noninflammatory after 

culture for 48 hours and that amine functionalized PEAs best supported cell spreading and 

proliferation. Srinath et al.11 investigated human coronary artery smooth muscle cells 

(HCASMC) cultured on PEA discs and PEA/PCL blended scaffolds with varying 

PEA:PCL ratios and assessed the suitability of PEA material properties for vascular tissue 

engineering and the ability of the fibrous scaffolds to induce elastin synthesis. 



www.manaraa.com

25 

 

Cytocompatibility analyses following 7 days of cell culture showed that PEA/ PCL fibrous 

mats had significantly higher viability compared to PCL fibre mats. Protein synthesis was 

observed using Western blotting demonstrated an upregulation of elastin on 3D PEA/PCL 

blended scaffolds compared to PEA films and PCL scaffold controls, indicating that elastin 

synthesis was influenced by the composition of the fibres and the 3D topography. 

 Previous works have shown that in addition to their the role of scaffolds as structural 

supports, the 3D scaffold topography and stiffness can provide complex signaling cues 

which can instruct cells on adhesion, proliferation, migration, differentiation and ECM 

protein synthesis.87  

Additionally, Lin et al.88 showed that the porous 3D environment of  poly(carbonate) 

urethane (PCU) scaffolds alone, without the use of exogenous growth factors, increased 

elastin expression two-fold after 4 days of culture compared to its 2D counterpart. These 

findings suggest that vascular smooth muscle interaction with fibrous ECM-mimicking 

structures may play an important role in vascular  cell behavior. 

2.4.5 Scaffold fabrication methods 

Scaffold morphology and architecture can be tailored depending on the intended 

application using a variety of fabrication methods. The techniques most often utilized are 

freeze-drying, solvent casting/particulate leaching and electrospinning. Freeze-drying is 

accomplished by first dissolving the polymer in water. The solution is then frozen at a 

pressure below the triple-point pressure. The environmental pressure imposed on the 

scaffold is then reduced to sublime the ice crystals, leaving behind a highly porous structure 

which can be modified by controlling the freezing rate.79 The unfrozen water in the material 
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is removed by desorption in a secondary drying process.90 Freeze drying is typically used 

for natural polymers that are soluble in water such as collagen. Although freeze drying 

allows for the fabrication of porous and interconnected scaffolds, it is a difficult technique 

to use for materials that are soluble in organic solvents as these materials have a much 

lower freezing temperature than water.  

 

Solvent casting/particulate leaching is another technique used to fabricate highly porous 

and interconnected scaffolds. Here, the polymer of interest is typically dissolved in an 

organic solvent and poured into a mold containing porogens.  After solvent evaporation, 

the porogen is leached out, thus forming a porous polymer scaffold. It is important to note 

that in order for this process to be successful, the solvent dissolving the polymer should 

not dissolve the porogen and the solvent used to dissolve the porogen in the final step must 

not affect the polymer. Solvent casting is a is relatively simple procedure and the pore size 

can be tuned according to the the size and type of porogen used, both of which are 

advantageous when designing tissue engineering scaffolds.91 

 Despite these benefits, there are some disadvantages to this technique. The scaffold 

fabrication time is long, with the leaching step alone lasting up to two days,91 and as this 

technique employs toxic solvents there is the possibility of residual solvents affecting the 

cytocompatibility of the scaffold. The differences in densities between the salt and polymer 

solutions, contributes to a heterogeneous pore distribution, resulting in uneven cell 

spreading.92 The uneven pore distribution means that some of the porogen may not be 

completely removed during the leaching step if the scaffold is too thick.92   
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Electrospinning is a highly versatile scaffold fabrication method that can create fibres in 

the nanoscale and microscale range, and mimic the dynamic ECM microenvironment.64 In 

this technique, shown in Figure 2.4, a	 high voltage source is connected to a syringe 

containing a polymer solution. The solution becomes charged, and as the electric forces 

overcome the surface tension, a charged solution of polymer is ejected, forming a Taylor 

cone . The solution undergoes a whipping instability as it exits the needle tip, increasing 

the path length and travel time, thus allowing the solvent to evaporate before the fibres are 

deposited onto a grounded collector. 4 The versatility is owed to the user’s ability to vary 

process parameters (i.e. flow rate and the distance from the needle tip to the collector, 

geometry of the collector) as well as solution parameters (i.e. polymer concentration, 

solvent) and is very advantageous for vascular tissue engineering applications. For 

instance, the geometry of the collector can be adapted to a cylindrical collector to create a 

tubular multilayered scaffold, which can be used to mimic the coronary artery, 94 or a flat 

collector, to form a fibrous mat to be used as a vehicle for drug delivery. Moreover, the 

fibre morphology can be modified by increasing the solute concentration, creating fibers 

with larger diameters and increased pore size.95 

 The ability to precisely tune the fibre characteristics using processing and solution 

parameters allows for simple modification of crucial mechanical properties such as tensile 

strength and burst pressure. Despite the overwhelming advantages of this technique, the 

primary challenge associated with electrospun scaffolds is inadequate cell infiltration due 

to the the dense packing of fibres, and small pore sizes.95  
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Aside from increasing fibre diameter, several post-processing approaches are being 

investigated to improve cell infiltration  such as leaching sacrificial layers, 96  and cryogenic 

electrospinning, which involves the simultaneous deposition of fibres and  ice crystals on 

a collector followed  by the lyophilization of ice crystals to create uniform pores.95 

 

 Bioreactors 

Bioreactors are systems which recreate tissue-specific physiological forces in a controlled 

in vitro environment and provide nutrient and oxygen delivery to the engineered tissue,97 

and as such are very important tools in the maturation of TEVGs.  Three typical 

hemodynamic forces induced by pulsatile blood flow in vascular conduits in vivo are   (1) 

shear stresses, which are frictional tangential forces that act directly on the endothelial cell 

layer (2) luminal pressure, a cyclic normal force attributed to blood pressure, and  (3) 

circumferential mechanical stretch caused by blood pressure 24  These forces have been 

            Figure 2.4  Schematic drawing of the electrospinning process.161 Reprinted from  Sill, T. J.& 
von Recum, H. A. Electrospinning: Applications in drug delivery and tissue engineering. 
Biomaterials 29, 1989–2006 (2008). Copyright (2008) with permission from Elsevier 
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shown to  modulate vascular smooth muscle cell phenotype, cell proliferation and vascular 

differentiation 98 Pulsatile perfusion bioreactors  are among the most utilized systems for 

designing vascular tissue engineered  constructs.  

The primary components of these systems are a sterile culture chamber containing the 

engineered construct, a motor driven pump to drive pulsatile perfusion, a medium 

circulating system to provide continuous flow of culture medium through the chamber, and 

a reservoir to feed culture medium into the system. 99 Several studies have utilized both 

human and animal vascular smooth cells 99,100 in order to elucidate biochemical pathways 

involved in phenotype modulation, however there are few studies using 3D stem cell 

cultures in a bioreactor setting for vascular tissue engineering applications, with the 

majority focusing on the role of shear stress mediated endothelial cell differentiation. 101  

As stem cells have an increased proliferative capacity and growth potential, exploring the 

role of pulsatile flow on VSMC differentiation on coronary artery-mimicking scaffolds as 

opposed to 2D cultures could have important implications in vascular tissue engineering.  

 Stem cell-based vascular tissue engineering: relevant studies  

As previously mentioned, stem cells have emerged as viable candidates to address the cell 

source limitation issue due to their proliferative and self-renewal capabilities.6 The 

following section will highlight relevant studies utilizing stem cells as sources for vascular 

cells as well as the important insights which can be gained by exploring stem cell 

interactions with tissue engineered scaffolds. 
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2.6.1  Pluripotent stem cells  

2.6.1.1 Embryonic stem cells (ESCs) 

As mentioned in section 2.4.1 , embryonic stem cells (ESCs) are the most expansive stem 

cell source and can differentiate into somatic cells from all three germ lineages, increasing 

the possibility of obtaining the large number of specialized cells required for vascular tissue 

engineering applications.102 Levenberg et al. 55 cultured human ESCs on porous salt-

leached PLGA scaffolds using two methods: (i) suspending the hESC cell culture in 

Matrigel and (ii) coating the scaffold with fibronectin to increase cell attachment  and 

explored the ability of the 3D microenvironment combined with TGFβ1 and retinoic acid 

(RA) growth factor stimulation to facilitate 3D vessel-like formation. They observed, using 

immunostaining, CD34+/CD31+ capillary networks when treated with control medium and 

medium supplemented with insulin growth factor (IGF). Interestingly, samples treated with 

RA did not form CD34+/CD31+ capillary networks or express the genes. This study also 

demonstrated liver and neural crest and hepatic cell differentiation with a cocktail of 

growth factors, suggesting that cellular transdifferentiation may occur. Control of 

differentiation has been one of the persistent barriers precluding the use of ESCs.6,55   

Sundaram et al. 102 sought to control ESC differentiation and improve the  proliferative 

capacity of MSCs by utilizing a specialized culture medium to differentiate highly 

proliferative hESCs into MSCs as an intermediary step. Following this, hESC-derived 

MSCs were either cultured on PGA mesh in a bioreactor for 8 weeks to assess cell 

infiltration and matrix protein deposition, or the MSCs were differentiated into VSMCs 

using TGFβ1 and varying serum concentrations prior to seeding on the PGA mesh 
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scaffolds. H&E staining indicated cell growth throughout the construct, and Masson’s 

trichrome stain showed collagen deposition, however elastin was not detected. 

 VSMC differentiation was verified by immunostaining with smooth muscle−α-actin (SM-

α-actin) and calponin after TGFβ1 and serum treatments, however chondrogenic, and 

osteogenic markers were also observed after 14 days of culture in a customized bioreactor, 

indicating transdifferentiation and further highlighting the difficulty in controlling ESC 

plasticity.  

2.6.1.2 Induced pluripotent stem cells (iPSCs) 

Human iPSCs provide an autologous source of pluripotent cells, circumventing the ethical 

and immunological concerns that limit the use of ESCs, making them a new and attractive 

cell source to be explored in vascular tissue engineering.103  Since its discovery 54  several 

studies have emerged using human iPSCs in vascular tissue engineering. Sundaram et al.102 

generated MSCs from human iPSCs, in a manner similar to their work with ESCs, using 

specialized differentiation media. The pure MSC population was isolated using flow 

cytometry with cell surface markers CD73+, CD90+, and CD105+ and CD45-. After culture 

for 8 weeks in a bioreactor, TEVGs exhibited burst pressure and suture retention strength 

that measured approximately half of saphenous veins.  

 

Additional karyotyping studies also showed that TEVGs containing cells with 

chromosomal abnormalities and shortened telomeres exhibited positive Von Kossa 

staining for mineral deposition and calcification, which is associated with 

atherosclerosis,104 and could contribute to vessel hardening if the construct is  implanted in 
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vivo.105 This may be attributed to osteogenic differentiation, or cell senescence, among 

other biological events,105  however further studies need to be performed to understand the 

underlying mechanisms involved.  

 

In another study, Xie et al. 56 utilized viral vectors for Oct4, KLF4, Sox2 and c-Myc to 

generate murine iPSCs from mouse embryonic fibroblasts and treated the cells with 10-5 M 

of all-trans RA for 5 days to differentiate them to a VSMC phenotype prior to seeding onto 

porous freeze-dried PLLA scaffolds. Gene expression analysis using qPCR indicated RA 

treatment suppressed the expression of pluripotent markers and increased expression of 

late VSMC markers myocardin (MyoCD), and smooth muscle myosin heavy chain (SM-

MHC) over 2 weeks compared to the  spontaneous differentiation control treated with 

dimethyl sulfoxide (DMSO), suggesting late-term differentiation to an VSMC phenotype, 

however subcutaneous TEVG implantation in severe combined immunodeficient (SCID) 

mice for 14 days showed no significant difference in expression of late term markers 

smoothelin and SM-MHC gene expression in both the treatment and the pluripotent control 

group suggesting cellular dedifferentiation and some pluripotent cell retention Further 

studies employed a more clinically relevant source of human aortic fibroblasts to generate 

human iPSCs, and an optimized VSMC differentiation protocol utilizing DMEM with 10% 

FBS and SmGM2 growth media at pre-determined time points.106  

qPCR results indicated upregulation of α-SMA, CNN1 (calponin) and SM22α and 

contractile response was assessed using carbachol, demonstrating the functionality of iPSC 

derived VSMCs.  Subcutaneous TEVG implantation into nude SCID was consistent, 

showing collagen deposition and positive staining for SM-	α-actin, CNN1 and SM22α. 
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Though these results are very promising steps towards the fabrication of patient-specific 

TEVGs,  the process of generating VSMCs from iPSCs is very long, requiring 

approximately 42 days and the robustness of the VSMC population derived from iPSCs is 

not known. 106 

Improvements to the iPSC derived VSMC efficiency were recently reported by Dash et 

al.107 whereby iPSCs were generated from adult fibroblasts using Yamanaka factors and 

differentiated to VSMCs in 21 days. Using FACS analysis, they demonstrated that over 

90% of human iPSC-VSMCs were positive for SM-22α and calponin. Additionally, when 

switched to a maturation medium containing SmGM-2, 0.5% (FBS) and 1 ng/ml TGFβ1 

for 10 days, gene expression analysis indicated that SM-MHC and elastin in hiPSC-

VSMCs increased from 3.86% ± 1.80% and 17.32% ± 2.30%, to 87.45% ± 7.10% and 

74.65% ± 4.60%, respectively. The VSMCs were injected into an agarose mold to fabricate 

scaffold-free vascular rings, forming tissue after 1 day of seeding and demonstrating a 

robust cell population, VSMC marker expression, and collagen deposition. VSMCs were 

utilized to engineer a 3D model of  supravalvular aortic stenosis (SVAS).108 The SVAS 

disease model tissue rings exhibited a significant decreased contractility and an increased 

proliferative cell count compared to the control group exhibited by the carbachol assay and 

staining for ki67 positive cells, respectively. Overall, this is the first study to  generate a 

robust VSMC population from iPSCs, and presents an innovative way to design tissue 

models to study vascular disease pathogenesis.107  
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2.6.2 Multipotent stem cells 

2.6.2.1 Bone marrow mononuclear cells   

 

The bone marrow is a soft connective tissue composed of a highly diverse cell population 

including multipotent hematopoietic stem cells (HSCs), endothelial cells, monocytes and 

MSCs among other cell types.6 This cell population, termed bone marrow mononuclear 

cells (BM-MNC)  can be harvested directly from bone marrow by centrifugation. BM-

MNCs are available the same day and do not require time consuming cell culture. BM-

MNCs were among the first stem cell source investigated for vascular tissue engineering 

applications.109 Shinoka’s group seeded canine BM-MNCs onto tubular PLCL scaffolds 

and implanted it into the inferior vena cava of a dog, and were able to construct vessels 

composed of both VSMCs and ECs which remained patent for up to 2 years.109  

 

Cho et al.110 designed a similar study, instead differentiating BM-MNCs into a VSMC 

population using  Medium 199 supplemented with 10% FBS and penicillin/streptomycin  

prior to seeding onto decellularized porcine abdominal aorta and found matrix 

metalloproteinases (MMP) and tissue inhibitor of matrix metalloproteinase (TIMP) 

expression in the TEVGs and native abdominal aortas at 18 weeks, suggesting the 

occurrence of vascular remodeling, which is a crucial step in the tissue engineering 

paradigm. 

 

 To study this effect, Roh et al. 111  seeded human BM-MNC onto biodegradable PLCL 

and implanted them as venous interposition grafts, however the BM-MNCs were no longer 
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detectable within a few days of implantation. Instead, scaffolds were initially repopulated 

by mouse monocytes and subsequently repopulated by mouse SMCs and ECs. They 

proposed a mechanism for vascular remodeling, whereby, BM-MNCs secrete a factor 

called monocyte chemoattractant-1 (MCP-1) to recruit monocytes to the scaffold  via 

paracrine signaling which will proceed to release angiogenic cytokines and growth factors 

to cause vascular remodeling within the scaffold. Though BM-MNCs provide a rich 

heterogeneous cell population, the cell extraction process is difficult and the proliferative 

capacity of the cells decreases with donor age and cell passage number, meaning that older 

patients who are most in need of TEVG therapeutics may not have a suitable autologous 

source. These limitations have led to investigations into alternative stem cell sources. 

2.6.2.2 Bone marrow mesenchymal stem cells   

Mesenchymal stem cells (MSCs) are adult progenitor cells which can differentiate into 

adipocytes, chondrocytes, osteocytes and other mesoderm-derived tissues.6 MSCs are the 

most widely used stem cell source in cell-based therapies for three reasons:  (1) unlike 

ESCs, there are no ethical considerations that preclude their use, (2) MSCs are less likely 

than ESCs and iPSCs to undergo spontaneous differentiation, and (3) they do not express 

the major histocompatibility complex (MHC) II largely responsible for immunorejection, 

which allows for allogenic cell sourcing.112   

MSCs derived from skeletal muscle 113 and hair follicles114  among other sources, have 

been studied for their ability to differentiate into VSMCs and their suitability as cell sources 

for TEVGs, however the two most commonly utilized MSCs in vascular tissue engineering 

are  adipose stem cells (ASCs) and bone marrow mesenchymal stem cells (BM-MSCs).  
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BM-MSCs represent a small fraction of the heterogeneous bone marrow cell population, 

and have been shown to differentiate into VSMCs using TGFβ1 and platelet derived 

growth factor-BB  (PDGFBB), two growth factors which were initially investigated for their 

roles in murine mesenchymal progenitor 10T1/2 cell differentiation by Hirschi et al. 115 

Building upon this work, Gong et al. 77 utilized human BM-MSCs and PGA tubular 

scaffolds and cultured the cell-scaffold construct in a bioreactor for 8 weeks in an optimized 

culture medium to create small diameter blood vessels and examined the effects of cyclic 

mechanical strain and growth factor addition on VSMC differentiation. Their findings 

demonstrated expression of the early and mid markers SM−𝛼-actin and calponin, 

respectively using immunofluorescence staining and Western blot after 14 days in the 

presence of 1 ng/mL of TGFβ1. Interestingly,  the late marker SM-MHC was not observed, 

suggesting that the cells were still at an early myofibroblast-like differentiation stage, 

possibly due to the acidic degradation products of the PGA scaffold.  The tubular scaffolds 

consisted of 22% collagen by dry weight, which is about half that of native vessels  and 

had burst pressures of over 200 mmHg, however elastin was not observed.  

Zhao et al. 116 studied VSMCs and ECs derived from ovine bone marrow MSCs seeded to 

decellularized vein scaffolds. VSMCs were differentiated using DMEM, serum, insulin, 

antibiotics and TGFβ1, and implanted into a sheep model.  

The early VSMC marker SM-	α-actin was observed using immunostaining, however mid 

and late-term markers such as calponin and SM-MHC were not shown, which may suggest 

the cells have not fully differentiated into contractile VSMCs. Nonetheless, the grafts 

demonstrated mechanical stability for 5 months, suitable burst pressure and suture 

retention, as well as the presence of collagen and 2 and 5 months. In vivo studies using 
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human BM-MSCs have also been used to investigate antithrombogenicity by Hashi et 

al.,117 whereby BM-MSCs were seeded on aligned nanofibrous scaffolds and rolled around 

a mandrel to mimic collagen fibril organization and implanted into a rat common carotid 

artery. Confluent layers of ECs and VSMCs were observed in the constructs. Additionally, 

when comparing the graft to an acellular control, they found that acellular grafts had 

significant intimal thickening after 60 days, whereas BM-MSC-seeded vascular grafts 

showed little intimal thickening, which suggests that MSCs may assist in reducing 

inflammatory responses induced by the foreign scaffold material.  

2.6.2.3 Adipose stem cells (ASCs) 

Adipose stem cells (ASCs) were first characterized by Zuk et al.118 in 2001, as a 

multipotent MSC source. ASCs are an attractive cell source due to their high proliferative 

capacity, relative ease in acquisition and ex vivo expansion, and high frequency of 

acquisition. ASCs are commonly derived from lipoaspirates obtained by cannular suction 

under local anesthesia. Self-renewing bone marrow mesenchymal stem cells (BM-MSC), 

are obtained by invasive drilling, which increases both the morbidity and risk of the 

procedure. Furthermore, BM-MSCs only comprise 0.01% of bone marrow, whereas ASCs 

are 500 times more abundant per equivalent volume of adipose tissue. 119  

It is important to note, however, that direct comparisons between BM-MSCs and ASCs as 

cell-based therapies are difficult to ascertain due to the donor variability of the stem cell 

samples.119,120 Rodriguez et al.121 were the first to demonstrate the VSMC and EC 

differentiation capabilities of ASCs using SMIM, FBS serum and heparin by induction of 
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VSMC markers SM-α −actin, calponin, and SM-MHC using both reverse-transcriptase 

polymerase chain reaction and Western blotting.  

 

Wang et al.122 designed small diameter vascular grafts, first by deriving VSMCs from 

human ASCs using TGFβ1	and bone morphogenic protein-4 (BMP4) and using those cells 

on a biodegradable PGA tubular scaffold. Mechanical stimulation increased collagen 

content in the PGA construct to 50 µg/g, corresponding to approximately 70% of human 

saphenous vein, which was used as the positive control. Further, vessel mechanical 

properties such as burst pressure and tensile strength were significantly increased in 

pulsatile conditions compared to their static counterparts. Similarly, Harris et al.123 

obtained lipoaspirates from 10 patients and studied ASC differentiation using angiotensin, 

TGFβ1 and sphingosylphosphorylcholine (SPC). Gene expression studies using qPCR and 

Western blot suggested that the extent of differentiation varied across patient lines, which 

they suggested may have been due to cell harvesting from older patients (mean age 65 

years), the majority of whom had co-morbidities. Previous work by this group 124  indicated 

that ASC extraction efficiency was unaffected by donor age, obesity or comorbidities 

although diabetes did appear to diminish the number of ASCs extracted from lipoaspirates. 

Contrary to this finding, Madonna et al  reported a decline in ASC availability with 

increasing patient age 125 although neither study tested their differentiation capacity. 124,126 

Krawiec et al.127 tested the differentiation capacity of ASCs from diabetic and elderly 

patients and determined that the ability of ASCs  from diabetic and elderly patients to  

differentiate into VSMCs under angiotensin II stimulation decreased and that ASC derived 

VSMCs from elderly donors did not promote SMC migration.  
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Building upon this study, ASCs from healthy and diabetic donors were used to fabricate 

TEVGs and implanted them as aortic interposition grafts in a rat model, and found that 

TEVGs fabricating using ASCs from diabetic patients had a higher incidence of 

thrombosis128 further demonstrating that donor variability and health status are limiting 

factors that must be taken into consideration when using ASCs for vascular tissue 

engineering.127 

2.6.2.4 Immortalized progenitor cells 

Autologous and allogenic stem cell sources are an exciting cell source and have abundant 

potential for the fabrication of TEVGs, however they have a small optimal passage range 

before losing their functionality, proliferation capacity and differentiation potential. 

Moreover, some stem cell sources, particularly ESCs and iPSCs, can undergo spontaneous 

differentiation, rendering the use of these cell sources difficult when conducting 

preliminary analyses of stem cell behavior, and the effect of growth factors on 

differentiation and cellular response.  

Due to these limitations, immortalized stem and progenitor cells are used are in vitro 

models to study the cellular and molecular mechanisms controlling vascular smooth muscle 

differentiation.15   

Immortalized cells, are stem cells which have been genetically reprogrammed to divide 

and proliferate almost indefinitely in cell culture, meaning the cell population can be 

expanded for a longer period of time, and derive a larger number of cells which is an asset 

when conducting extensive biological analyses. Cell lines frequently used for smooth 
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muscle differentiation analysis include A19 cell and C3H10T1/2 (10T1/2 cells).  Hirschi 

et al.115  studied if and how ECs recruit mural cell progenitor 10T1/2 cells and induce their 

differentiation during neovessel formation. Using immunohistochemistry and Western 

blot, their findings showed that 10T1/2 cells increased their expression of contractile 

smooth muscle markers calponin, SM-MHC and SM22α when co-cultured with ECs and 

with the addition of TGFβ1. Moreover, using, EC-10T1/2 co-culture under agarose gel, 

they demonstrated the role of PDGF-BB in inducing 10T1/2 migration towards ECs. This 

was one of the first studies determining the role of cell-cell interactions and paracrine 

signaling on the recruitment and differentiation potential of mural progenitor cells and the 

formation of blood vessels. In addition to cytokine addition and paracrine signaling 

mechanical stimulation has been shown to have a significant impact on cell proliferation, 

migration and differentiation, serving as a springboard for further studies investigating the 

potential of stem and progenitor cells as novel cell sources for vascular tissue 

engineering.77 

 Motivation and Objectives  

Current synthetic materials used to support stem cell differentiation in vascular tissue 

engineering applications such as PGA and PLA  produce acidic degradation products, 

which can lead to a cytotoxic environment and may be adversely affecting differentiation77 

and their degradation rates are difficult to control. 129 

Poly (ester amides) containing α- amino acids produce both acidic and basic by-products, 

thus limiting the downward pH drift. Moreover, as the material is a copolymer, the 

degradation rate and mechanical properties can be tuned depending on the starting 
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materials used. PEAs have been studied as novel biomaterials for vascular tissue 

engineering, 11, 85, 86 however studies thus far have used primary cells, and the ability of 

this material to support vascular differentiation has yet to be explored.  

10T1/2 cells were chosen for this study because they have a robust proliferative capacity, 

are less likely to undergo spontaneous differentiation and are able to maintain stable 

phenotype in culture. 15  

Moreover, 10T1/2 cells are able to differentiate to VSMCs using TGFβ1. This cell source 

will be used to determine the ability of our PEA material to support VSMC differentiation 

and the feasibility of fabricating a small diameter vascular tissue to be used as a preclinical 

testing model.  

The objectives of this thesis work are therefore the following: 

(i) Fabricate a 3-D fibrous mat and tubular scaffold using electrospinning  

(ii) Study 10T1/2 cell-material interactions with the mat and tubular scaffold, by assessing 

cell attachment, spreading and infiltration 

(iii)  Differentiate 10T1/2 cells to a VSMC lineage using TGFβ1 examining both gene and 

protein expression 
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Chapter 3  
 

3 Materials and Methods 

 Materials 

p-toluenesulfonic acid salt crystals was purchased from JT Baker (Phillipsburg, NJ). All 

other chemicals, including L-phenylalanine were obtained from Sigma Aldrich 

(Milwaukee, WI). All solvents were acquired from Caledon (Georgetown, ON).  

 Methods 

3.2.1 Monomer synthesis 

The poly (ester amide) was synthesized as previously reported.85 Briefly, the di-p-

toluenesulfonic acid salt monomer was synthesized by acid-catalysed condensation. A 

mixture of L-phenylalanine (60.8 mM, 2.2 equivalents), p-toluenesulfonic acid 

monohydrate (66.3 mM, 2.4 equivalent), and 1,4-butanediol (27.6 mM, 1 equivalent) in 

toluene (100 mL) was heated to 140°C while stirring in a flask equipped with a Dean-Stark 

apparatus. The solution was refluxed for 48 h, and then the solvent was removed under 

vacuum. The resulting product was filtered and washed with toluene. The monomer was 

purified by dissolving in boiling deionized water (300 mL) followed by hot filtration, and 

the solution was left to recrystallize overnight at 4°C. The purification step was repeated; 

the monomer crystals were then filtered and dried under vacuum. 
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3.2.2 Polymer synthesis (8-Phe-4) 

To synthesize the polymer, sebacoyl chloride (5 mM, 1 equivalent) was dissolved in glass 

distilled anhydrous dichloromethane (15 mL) and the solution was added dropwise to an 

aqueous solution (15 mL) containing di-p-toluenesulfonic acid salt monomer (5.0 mM, 1 

equivalent) and sodium carbonate (10 mM, 2 equivalents), and allowed to react for 16 h. 

The solution was rotovapped once the reaction was complete in order to remove residual 

dichloromethane. The polymer was then washed with deionized water prior to purification 

via Soxhlet extraction with ethyl acetate for 48 h, followed by drying under vacuum for   

72 h.85  

3.2.3 Spectroscopic analysis: 1H-NMR 

1
H-NMR (400 MHz) spectra were obtained on a Varian Inova 400 spectrometer (Varian 

Canada Inc., Mississauga, ON). Chemical shifts are reported in parts per million (ppm) and 

are calibrated against residual solvent signals of chloroform (CHCl3, δ 7.2 ppm).  

3.2.4 Gel permeation chromatography (GPC) 

Gel Permeation Chromatography (GPC) data was obtained using a Waters 2695 

Separations Module that was equipped with a Waters 2414 Refractive Index Detector 

(Waters Limited, Mississauga, ON) and two PLgel 5 µm mixed-D (300nm × 7.5mm) 

columns connected in series (Varian Canada Inc., Mississauga, ON). Samples (5 mg/mL) 

dissolved in DMF with 10 mM lithium bromide and 1 % (v/v) triethylamine were injected 

(100 µL) at a flow rate of 1 mL/min.130  
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 Scaffold fabrication 

3.3.1 Electrospinning of 3D fibrous mat 

The electrospinning setup consists of a high voltage DC Power Supply (ES30P, Gamma 

high voltage, USA), a glass syringe (Becton, Dickinson and Co., 0.5 mL, NJ, USA) with a 

blunt-tip stainless steel needle controlled by a syringe pump (KD101, KD scientific, USA), 

and a stainless steel rotating mandrel (25 mm diameter) covered with aluminum foil. The 

concentrations of the polymer used were 5, 6 and 7 % w/w, in order to obtain bead-free 

fibers with uniform fiber diameter distribution.130 

3.3.2 Electrospinning of tubular scaffold 

In order to fabricate tubular PEA scaffolds, the electrospinning setup was modified to 

include a 4 mm diameter stainless steel rotating mandrel. The rotating mandrel was coated 

with Span®80 (Sigma-Aldrich, Milwaukee, WI), prior to electrospinning, to facilitate the 

removal of the fibres and preserve its tubular structure. Formulation parameters were kept 

constant at 6% w/w while the rotation speed (150, 1000, and 2000 RPM) was varied to 

obtain bead-free fibres with uniform fibre diameter distribution.  

3.3.3 Scanning electron microscopy (SEM) 

The morphology of the PEA fibres was visualized using SEM, (S-2600N, Hitachi, Japan); 

fibrous mats and tubular scaffolds were cut into square mats to facilitate the imaging of the 

fibrous structure. Samples were mounted on carbon-taped aluminum stubs and sputtered 

with gold/palladium (K550X, sputter coater, Emitech Ltd., UK) at 15 mA for 3 to 5 minutes 

prior to analysis.  
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Samples were scanned at a working distance of 9 mm and an accelerating voltage of 5 kV. 

Fibre diameter distributions were assessed using ImageJ software (NIH, Bethesda, MD, 

USA), where a sample size of 100 fibres from three separate images were measured for 

each fibre diameter distribution, and the ImageJ directionality plugin was utilized to 

determine the preferred fibre orientation. 131 Fibre diameter distribution and fibre 

orientation histograms were computed using GraphPad Prism 6.  

 Cell studies 

3.4.1 Cytotoxicity and cell proliferation assays 

Circular samples (4 mm in diameter) of electrospun mats on aluminum foil were punched 

and affixed to a 96-well cell culture plate (BD FalconTM, Franklin Lakes, NJ) using 

silicone grease, and sterilized by immersion in 70% ethanol (100 µL) for 30 min, before 

conditioning overnight in Hank’s balanced salt solution (HBSS, 100 µL; Invitrogen 

Canada, Burlington, ON). 

For cytotoxicity, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

assay was performed following the manufacturer’s protocol (Vybrant®, Invitrogen, 

Burlington, ON, Canada). First, cells were seeded onto electrospun PEA mats at 10,000
 

cells/scaffold which were then cultured in DMEM supplemented with 1% penicillin/ 

streptomycin (P/S) solution and 5% FBS  for 3, 7 and 14 days, respectively. Medium was 

refreshed (100 µL) every 3 to 4 days. At the pre-determined time points,12 mM MTT 

solution was added to each well and then incubated at 37 °C for 4 h. Afterwards, 100 µL 

10% (w/v) SDS was added to solubilize the formazan, and further incubated at 37 °C for 

18 h.  
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Lastly, the absorbance of the coloured product was recorded at 562 nm by a microplate 

reader in a 96-well plate. Negative control experiments were conducted by adding MTT to 

the culture medium only and were subtracted from the samples to obtain the final reading.  

DNA quantification was assessed using the CyQUANT cell proliferation assay 

(ThermoFisher Scientific, Burlington, ON). Briefly, the cell-seeded PEA scaffolds were 

removed from the incubator at 3, 7 and 14 days, washed three times with 1 × PBS, placed 

in microcentrifuge tubes, and frozen at -80	°C until assayed. The cells were thawed at room 

temperature, and 100 µL of CyQUANT GR dye/cell lysis buffer was added to each 

microcentrifuge tube to release the DNA from the constructs. The constructs were covered 

in aluminum foil and incubated for 5 min at room temperature in the dark, at which point 

the supernatant was collected and the fluorescence intensity was measured on an M1000 

Infinite Pro microplate (Tecan US, Inc. Morrisville, NC) at an excitation wavelength of 

480 nm and an emission wavelength of 520 nm. 

3.4.2 Bioreactor and dual-pump perfusion system design 

The ElectroForce® bioreactor system from BOSE (Eden Prairie, MN, USA) with 

customized modifications to simulate the hemodynamic environment was used for this 

work. The bioreactor consists of four parts: a sterilisable BioDynamic® chamber, a pulsatile 

pump coordinating with pulsatile manifold to induce luminal pulsation, a peristaltic pump 

(MasterFlex®, Coleparmer, Canada) providing global circulation of culture medium, and a 

reservoir with tubing to feed culture medium into the system.  
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In order to culture the constructs dynamically, culture medium contained in a media 

reservoir was peristaltically pumped into the chamber generating a chamber circulation, at 

a flow rate of 4.8 mL/min.  

In the meantime, medium in the chamber was also rhythmically pumped into scaffold 

lumen driven by a pulsatile pump at a frequency of 1 Hz, generating a pulsatile perfusion 

at a flow rate of 40 mL/min (Level 1) and 8 mL/min (Level 2) corresponding to 63 

drops/min. WinTest® software (version 4.0) was used to provide data acquisition and 

instrument control. The bioreactor system was maintained in a humidified incubator at      

37 ºC containing 5% CO2. (Lin and Mequanint., unpublished work)163 

3.4.3 C3H10T1/2 cell seeding on tubular scaffold 

10T1/2 cells were maintained in high glucose DMEM with 5% FBS and 1% P/S, and 

incubated at 37 °C and 5% CO2. The cells were passaged just prior to reaching confluence. 

Tubular scaffolds were pre-conditioned in HBSS overnight, then sectioned into 1 cm 

segments and fully submerged in 70% ethanol to sterilize for 30 minutes. Following 

sterilization, the scaffolds were washed three times with HBSS, and then changed to normal 

culture medium for equilibration. Scaffolds were placed back into a sterilized glass 

chamber, with similar dimensions to the rotating mandrel, with a stainless steel rod placed 

in the lumen of scaffolds. The scaffolds were seeded at high density with approximately 

5×106 cells. First, the cell pellet was quickly resuspended in 120 µL of DMEM culture 

medium containinng 2 mg/mL of rat tail collagen type 1 (Corning Inc., USA), 90 µg/mL 

of human fibronectin (Biomedical Technologies Inc., Stoughton, MA), and 1.58 µL of 1N 

NaOH to maintain pH at 7.4. The cell suspension was pipetted into the scaffold (120 µL/1 
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cm segment) and the central mandrel was gently stirred to ensure even spreading of cell 

suspension on the scaffold. The cell-collagen gel was allowed to polymerize at 37 °C in 

the incubator for 30 minutes to ensure cell adhesion had occurred and was subsequently 

transferred into a tissue culture flask for static pre-culture.  

After 3 days of static pre-culture, the static culture control was kept in the flask for 4 days, 

and the sample for dynamic culture was transferred into the bioreactor for 4 days. (Lin and 

Mequanint., unpublished work)163 

 Immunofluorescence staining and laser scanning confocal microscopy 

Cell attachment, spreading and infiltration were assessed for electrospun PEA fibre mats 

and tubular scaffolds using confocal microscopy. For the fibre mats, 10T1/2 cells were 

seeded onto control glass coverslips and PEA fibers, for three and seven days. Cells were 

washed with pre-warmed PBS immediately prior to fixing at 4	°C for 15 min in 4% 

formaldehyde solution (1 mL; EMD Chemicals) in divalent cation-free PBS. Following 

three washes in PBS, 10T1/2 cells were permeabilized with 0.1% Triton X-100 (0.5 mL; 

VWR International, Mississauga, ON) in PBS for 5 min and again washed three times with 

PBS. The cells were incubated with 1% BSA in PBS (0.5 mL; Sigma-Aldrich, Oakville, 

ON) for 30 min at room temperature prior to their incubation with AlexaTM Fluor 568-

conjugated phalloidin (1:50 dilution; Invitrogen Canada, Burlington, ON) in the dark for 1 

h at room temperature followed by another three washes with PBS. The cells were then 

counterstained with 4′–6-diamidino-2-phenylindole dyhydrochloride (DAPI, 300 nM in 

PBS, 0.5 mL; Invitrogen Canada, Burlington, ON) for 5 min to label the nuclei and again 

washed three times with PBS. No.1 coverslips were mounted on microscope slides with 
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Trevigen® Fluorescence Mounting Medium (Trevigen INC., Gaithersburg, MD) and 

sealed with clear nail enamel. Samples were analyzed with a Zeiss LSM 5 Duo confocal 

microscope with nine laser lines and appropriate filters (Carl Zeiss, Toronto, ON, Canada).  

For tubular scaffolds, a similar methodology was employed, whereby the constructs were 

fixed in 4% (w/v) paraformaldehyde (EMD Chemicals Inc. Gibbstown, NJ) and embedded 

in optimal cutting temperature (OCT) compound (VWR, Canada), and cut into 30-50	µm 

sections with a Leica CM3050 S Cryostat (Leica Microsystems Inc., Canada) prior to 

imaging, using DAPI and  AlexaTM Fluor 468-conjugated phalloidin (green). 132 

The late-term VSMC marker SM-MHC was identified using immunofluorescence staining 

of OCT-embedded sections with rabbit anti-SM-MHC IgG (1:50; BT Inc.). Primary 

antibody binding was detected using Alexa Fluor® 555-conjugated goat anti-rabbit IgG as 

a secondary antibody (1:500; Life Technologies, Burlington, ON). 4’,6-Diamidino-2-

phenylindole (DAPI; 300 nmol in PBS) was used to visualize cell nuclei and F-actin was 

observed with AlexaTM Fluor 594-conjugated phalloidin (1:100; Life Technologies). 

Images were taken with a Zeiss LSM 510 confocal microscope (Zeiss, Canada) with nine 

lasers and appropriate filters.  

 Smooth muscle phenotype marker expression: qPCR and Western blot 

analyses 

10T1/2 cells were seeded at a density of 2.5–5.0 ×105 cells per scaffold on 12-well plates 

(circular specimens 1.9 cm in diameter), and the samples were extracted at day 3 and day 

7 for qPCR and Western blot analysis, respectively. qPCR was used to quantify messenger 

RNA (mRNA) expression of SM-α-actin and SM-MHC in 10T1/2 cells grown on PEA 
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fibres. First, total RNA was extracted using Trizol reagent (Life Technologies) following 

the manufacturer’s instructions.  

Complementary DNA (cDNA) was synthesized using 1 µg of total RNA primed with 

random primers as described in Promega™ Random Hexamers protocol (Fisher Scientific, 

Canada). qPCR was conducted in 10 µl of reaction volumes, using a CFX96™ Real-Time 

System (C1000 Touch Thermal Cycler; Bio-Rad, Canada) and gene expression of 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), SM-𝛼- actin, and SM-MHC were 

determined with iQ™ SYBR® Green Supermix (Bio-Rad) according to the recommended 

protocol of the manufacturer. The sequences of primers were designed using Primer3Web. 

SM-𝛼-actin forward primer 5’- GGG CTA TAT AAC CCT TCA GCG-3’, reverse primer: 

3’- GCT GTC TTC CTC TTC ACA CAT-5’. GAPDH forward primer 5’- GGT GGT CTC 

CTC TGA CTT CAA CA -3’ reverse primer 3’- GTT GCT GTA GCC AAA TTC GTT 

GT-5’. SM-MHC forward primer 5’ -CTG GTT ACA TTG TAG GTG CCA-3’, reverse 

primer 3’- GCG AGC AGG TAG TAG AA GAT G-5’. The results were analyzed with the 

comparative threshold cycle method and normalized with GAPDH as an endogenous 

reference. (Lin and Mequanint, unpublished work)163 

Western blotting was performed to evaluate the expression levels of VSMC phenotypic 

marker proteins. At day 7, cells were washed three times with ice-cold PBS and whole cell 

lysates were obtained by harvesting cells in 100 mL of sodium dodecylsulfate 

electrophoresis sample buffer containing 5% (v/v) β-mercaptoethanol. Lysates were 

sonicated, microcentrifuged, and the protein concentrations were determined by 660 nm 

Protein Assay (Thermo Scientific, Ottawa, Canada). Protein samples (30 µg) were 
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separated by 10% sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

and transferred at 90 V for 1 h at 4 °C to a nitrocellulose membrane in a Tris-glycine buffer.  

 

Transfer efficiency was assessed by Ponceau red stain. Nitrocellulose membranes were 

blocked with 5% nonfat dry milk in PBS and incubated overnight at 4 °C with primary 

antibodies (anti SM-𝛼 -actin 1:1000; anti-GAPDH (1:5000, Millipore); anti-SM-MHC IgG 

(1:500; Biomedical Technologies Inc). Membranes were again washed three times, and 

then incubated for 5 min in SuperSignal West Pico Chemiluminescent substrate (Thermo 

Fisher Scientific, Rockford, IL) and examined with a Molecular Imager ChemiDocTM 

XRS+ system (Bio-Rad Laboratories (Canada) Ltd., Mississauga, ON).  
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Chapter 4  
 

4 Results and Discussion 

 PEA synthesis and characterization  

In this work, PEA synthesis using L-phenylalanine, 1,8 butanediol and sebacoyl chloride 

was obtained using the interfacial polymerization technique, and the results were consistent 

with previous reports (Figs 4.1 and 4.2).85 Interfacial polymerization, a technique in which 

two reactive monomers in an aqueous and organic layer form a polymer film near the 

interface, was preferred over the conventional solution polycondensation technique for two 

reasons:  Firstly, the polymerization times are shorter compared to the  solution 

polycondensation technique. Secondly, the synthesis can be performed at room 

temperature, which yields fewer side products and impurities as the majority of these are 

unreactive at room temperature, which may allow for the production of linear polymers 

with higher molecular weight.85,133 

8-Phe-4 

Figure 4.1 Synthesis scheme for 8-Phe-4 derived from L-phenylalanine, 1,4 butanediol  and 
sebacoyl chloride by interfacial polymerization 
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1H-NMR was used to confirm the structure of 8-Phe-4. All the anticipated peaks were 

detected as shown in Figure 4.2 confirming the purity of the product. The CDCl3 solvent 

peak appears at a chemical shift of 7.2 ppm.  

 

 

The 8-Phe-4 polymer was subsequently characterized using gel permeation 

chromatography (GPC), a technique which separates molecules based on their effective 

size in order to determine molecular weight distribution. Molecular weight is a very 

Figure 4.2  1H-NMR spectra of PEA from L-phenylalanine, 1,8-butanediol and 
sebacoyl chloride (8-Phe-4) 
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important parameter as it plays a role in polymer characteristics such as mechanical 

properties, degradation rate, and glass transition temperature (Tg), which are all essential 

components to consider when assessing the suitability of a material for vascular tissue 

engineering applications.  

 

Figure 4.3 demonstrates the GPC trace for 8-Phe-4, demonstrating the elution time of the 

8-Phe-4 polymer, which was compared to a polystyrene standard in order to determine the 

molecular weight. An average molecular weight of 55 kDa and a polydispersity index 

(PDI) of 2.01 were obtained. The PDI is the ratio of the weight average molecular weight, 

(Mw) to the number average molecular weight (Mn) and measures the non-uniformity of 

the polymer chains which is inherent in condensation polymerization. PDI values 

approaching 1 indicate more uniform molecular weight distributions. The 8-Phe-4 yield 

was 80%, and molecular weights were kept consistent between 55 and 60 kDa for the 

different batches prepared. In the following sections, the generic name PEA will be used 

in place of 8-Phe-4 for simplicity.    
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Figure 4.3  GPC trace of 8-Phe-4 derived from L-phenylalanine, 1,4-buanediol and 

sebacoyl chloride by interfacial polymerization 

 

 Electrospinning 

4.2.1 Electrospun 3D fibrous mats 

After successfully synthesizing the PEA, and obtaining batches with consistent molecular 

weights (between 55 and 60 kDa), the material was electrospun to fabricate 3D fibrous 

mats for subsequent mesenchymal progenitor 10T1/2 cell interaction and vascular 

differentiation studies. As mentioned in the literature review, electrospinning is a highly 

modular and versatile technique, that is often utilized in tissue engineering strategies to 

fabricate nanofibres which can mimic the ECM microenvironment.64 The increased surface 

area to volume ratio allows for improved cell adhesion, and the ability to easily tune the 

mechanical and biological properties of the fibres by varying solution parameters (e.g. 
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polymer concentration and solvent) and process parameters (rotation speed, geometry of 

the collector, and needle tip to collector distance) is a significant advantage that is difficult 

to achieve in other scaffold fabrication methods.95 Table 4.1 summarizes the 

electrospinning parameters that were studied in this work. The PEA was electrospun with 

a co-solvent mixture of  9:1 chloroform (CHCl3) and DMSO and a flow rate of 0.1 mL/h 

previously optimized in our laboratory.130 The DMSO was added, as its high dielectric 

constant increases the conductivity of the polymer solution, which is a phenomenon known 

to favor bead-free fibre formation.134 The processing parameters (i.e. solution volume, 

rotation speed and mandrel geometry) were investigated in subsequent studies using the 

3D electrospun tubular scaffold.  
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Table 4.1  Summary of electrospinning parameters used for 3D electrospun mats 
and tubular scaffold 

 

 

 

Parameters PEA fibre mat PEA tubular scaffold 

Concentration  5, 6, and 7% w/w 6% w/w 

Voltage 20 kV 

Flow rate 0.1 mL/h 

Spinneret diameter 22 gauge 

Solvent 9:1 w/w CHCl3: DMSO 

Needle tip to collector distance 8 cm 

Volume spun 0.5 mL 1.5 mL 

Rotation speed 1000 RPM 125, 1000, and 2000 RPM 

Mandrel geometry and size Large cylindrical rotating 

mandrel           (25 mm) 

Small cylindrical rotating 

mandrel (4 mm) 
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4.2.2 Effect of solution concentration on fibre morphology 

For the 3D electrospun mats, the primary objective was to fabricate scaffolds with uniform 

fibre diameter and defect-free fibres. As previous studies have demonstrated polymer 

solution concentration is one of the most important determinants of fibre morphology and 

bead formation,135,136 , solution concentrations of 5, 6 and 7% w/w were electrospun to 

study the effect of polymer concentration on fibre morphology in this work. These 

concentrations were adapted from previous studies using PEA fibres, which determined 

that working concentrations above 7% w/w were highly concentrated and too viscous and 

resulted in polymer drying at the needle tip, due to the high volatility of chloroform 

(Boiling Point = 61°C).130 PEA solutions electrospun at 5% w/w were not viscous enough 

for electrospinning and resulted in the formation of a electrosprayed thin layer of polymer 

film (data not shown), as such, studies were continued using working concentrations of 6% 

and 7% w/w. 

 

Figure 4.4 demonstrates SEM images of 3D fibrous mats spun at these concentrations. 

Morphologically, the 3D electrospun mats at 6% w/w and 7% w/w showed uniform fibres 

and exhibited random orientation. One hundred fibre diameters were measured randomly 

from three images using ImageJ, and a histogram was plotted order to determine which 

concentration had the most uniform fibre diameter distribution. The average fibre 

diameters were 134 ± 35 nm for 6% and 161 ±	74 nm for 7%.  Although there was no 

significant difference between the mean fibre diameters at 6% and 7% solution 

concentrations, the fibres spun using 6% w/w PEA solution demonstrated a more uniform 

fibre diameter distribution, observed in Figure 4.4C, by the smaller standard deviation and 
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the narrower Gaussian distribution curve. Uniform fibres have been shown to improve cell 

adhesion and F-actin distribution and spreading, the latter of which, is a crucial element in 

cell migration and proliferation.137 For this reason, 6% w/w solution concentration was 

utilized for subsequent tubular scaffold fabrication and cell-scaffold interaction studies.  
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Figure 4.4 SEM images of 6% and 7% w/w PEA fibres and respective fibre diameter 

distributions. Scale bar represents 2 𝛍m. Bin size for histogram is 20 𝛍m 
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4.2.3 Electrospun 3D tubular scaffold fabrication  

Once the solution parameters which produced uniform and bead-free fibres were 

established, the PEA was electrospun onto a small-diameter rotating mandrel in order to 

mimic the dimensions of the coronary artery as opposed to the 3D electrospun mats which 

were spun onto aluminum foil. The volume of electrospun PEA solution increased to obtain 

a construct with a wall thickness of 113 µm.		Following the electropsinning process, the 

scaffold adhered tightly to the mandrel, which made removal of the sample difficult, 

without compromising the integrity of the nanofibres. Initially, soaking the scaffolds in 

water for 72 h was considered to facilitate the removal of the tubular scaffold from the 

mandrel, however this resulted in excessive fibre fusion and swelling.  In order to address 

this, Span-80, a nonionic surfactant was used to lubricate the surface of the mandrel prior 

to electrospinning. This method, combined with cutting the constructs into small segments 

with a blade and careful removal from the mandrel with tweezers, resulted in intact tubular 

constructs shown in Figures 4.5 A-C.  
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Figure 4.5A demonstrates a macroscopic image of two tubular scaffolds, with the first 

image showing a dimensionally stable tubular scaffold, which is approximately 4 mm in 

internal diameter, consistent with luminal diameter studies conducted by Dodge Jr. et al.138 

which found the internal left anterior descending coronary artery diameter to be 3.7 ±	0.4 

mm. The SEM images in Figures 4.5 B&C show the tubular scaffold cross-section, and 

fibre morphology, respectively. In Figure 4.5B, the wall thickness was measured at 113 

µm. In Figure 4.5C, significant fibre bundling was observed. 

 

 

B 

L 

A C 

Figure 4.5 A) Digital image of PEA tubular scaffold B) Cross-section SEM image of 
PEA tubular scaffold at 300× magnification, (L) indicates the lumen of the structure. 
Scaffold wall thickness is 113 𝛍m C) PEA nanofibres at 5000× magnification. Purple 
circles indicate bundling of the nanofibres. Scale bar in B and C represent 50 𝛍m and 
2 𝛍𝐦, respectively 
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4.2.4 Effect of mandrel rotation speed on fibre orientation 

Previous studies suggested that the orientation of the nanofibres is affected by the rotation 

speed of the mandrel,139,140 whereby an increase in rotation speed will favour parallel fibre 

orientation. In this study, the effect of rotation speed on possible fibre alignment was 

explored by varying the number of revolutions per minute (RPM) of the rotating mandrel 

to 150 RPM, 1000 RPM (the rotation speed used in the previous section), and 2000 RPM. 

To visualize this effect on fiber morphology, SEM images were taken at 1500×, 3500× 

and 10000×, and are shown in Figure 4.6. 
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Figure 4.6  Representative SEM images of PEA fibres electrospun onto small diameter tubular 
scaffold at 150, 1000, and 2000 RPM using three magnifications. Scale bars represent for A-C =10 
µm, D-F = 5 µm and G-I = 2 µm, respectively. 
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In Figure 4.6 (G-I), little morphological variation was observed  between the rotation 

speeds ,  however some fibre fusion was observed in Figures 4.6B & C using 1000 and 

2000 RPM, which is undesired as it may indicate the presence of residual solvent,141 which 

could potentially affect the cytocompatibility of the PEA fibres. Mean fibre diameter 

distributions shown in Figure 4.7 were 289	±	85 nm, 276	± 107 nm, and 289 ±	113	nm	for 

150, 1000 and 2000 RPM, respectively, confirming that varying the rotation speed of the 

mandrel had no significant impact on fibre diameter in this study.   

 

Once the effect of mandrel rotation speed on fiber morphology and diameter distribution 

was studied, and qualitative differences were not observed, the degree of orientation of the 

fibres was determined quantitatively using the computerized ImageJ directionality plugin.  
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PEA scaffold fibre diameter distribution 1000 rpm

Figure 4.7 The effect of mandrel rotation speed on fibre diameter distribution for 150, 1000 and 2000 RPM 
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The directionality plugin computes the preferred orientation of the fibres in the SEM 

image, between -90°	and 90°, from a pre-determined reference, and plots a histogram 

demonstrating the proportion of fibres oriented around a given angle.131  

The directionality plugin was utilized for three SEM images at each rotation speed, with 

the data from one representative SEM image at each RPM collected, and plotted on 

GraphPad using non-linear regression analysis and shown in Figure 4.8.  SEM images with 

non- oriented fibres give a flat histogram, while fibres that have a preferred orientation will 

give histograms with a Gaussian distribution.131   
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Figure 4.8  Fibre orientation histograms for PEA fibres spun at 150, 1000 and 2000 RPM on a 
rotating mandrel 
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In Figure 4.8A, which shows the fibre orientation frequency distribution for the PEA fibres 

spun at 150 RPM, the frequency distribution was analyzed using the sum of two Gaussians 

instead of the typically used Gaussian distribution. This suggests that there are two 

normally distributed fibre orientations within the image, at approximately +80° and -80°, 

and that the fibres have more than one preferred orientation. In Figure 4.8B, it can be seen 

from the Gaussian distribution curve, that increasing the rotation speed to 1000 RPM 

caused the preferential orientation of the PEA fibres at -5°, and 25 percent of the PEA 

fibres were oriented between -10° and 10° with respect to the reference. Although the 

Gaussian distribution curve was not as narrow, the fibre orientation histogram obtained 

using 2000 RPM exhibited a similar distribution profile to Figure 4.12B, with a preferred 

orientation at -20°, and 25 percent of fibres oriented between -40° and -10°, with respect 

to the reference. Taken together, the results of this study suggest that increasing the 

mandrel rotational speed above 150 RPM supports increased fibre directionality and 

preferential fibre orientation around one angle.  

 

Overall, the results of this work were consistent with previous studies which concluded 

that an increase in mandrel rotation speed increases fibre directionality, and favours the 

formation of aligned fibres .142,143 Indeed, the ability to easily tune fibre orientation during 

the fabrication of electrospun scaffolds using rotation speed, is a characteristic that can be 

tailored to several applications in the tissue engineering field. For instance, in skeletal 

muscle tissue engineering, an aligned ECM provides topological cues which influence 

cytoskeletal organization, promoting myoblast orientation in parallel and providing contact 

guidance for myoblast contraction and differentiation. In a study by Aviss et al., 142 aligned 
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electrospun PLGA scaffolds were fabricated by increasing the rotation speed from 300 

RPM to 1500 RPM. Additionally, immunofluorescence staining demonstrated a significant 

increase in staining for myoblast differentiation marker fast myosin heavy chain in aligned 

scaffolds compared to their randomly orientated counterparts. Similarly, other  tissue 

engineering strategies have utilize aligned scaffolds for intervertebral disk regeneration144 

and tendon regeneration. In a previous study conducted by Yin et al. 145 which sought to 

determine the role of matrix orientation on the differentiation of tendon stem cells, it was 

found that increasing the rotation speed to 4000 RPM during the electrospinning process 

resulted in fully aligned fibres, and an upregulation of tendon-specific genes was observed 

on aligned fibres compared to their randomly-oriented counterparts.  

For the work in this thesis, which focuses on the fabrication of in vitro vascular tissue 

engineered constructs, random fibre orientation is desired as it may increase pore size, 

allowing improved 10T1/2 cell interaction, infiltration and diffusion of metabolic waste, 

and the subsequent remodeling of the construct, and as such 150 RPM was chosen as the 

mandrel rotation speed for the following in vitro bioreactor maturation studies.  
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 Cell viability, interaction, and differentiation studies 

4.3.1 10T1/2 cell viability and proliferation studies 

As previously mentioned, the three primary constituents in the tissue engineering paradigm 

are scaffolds, cells, and bioreactors. Scaffolds mimic the native ECM microenvironment 

and provide a porous 3D environment for cellular ingrowth. In view of this, once the 

scaffold fabrication parameters have been refined, the next step was to ensure that the 

electrospun scaffolds are cytocompatible and can support cell attachment and proliferation.  

Therefore, in order to evaluate 10T1/2 cell viability and proliferation, two biological assays 

were used. For cytotocompatibility, MTT assays were performed using 4 mm PEA fibres 

which were hole-punched and affixed to 96-well plates using silicon grease, and standard 

TCPS wells used as a positive control. The MTT assay is a colorimetric assay evaluating 

metabolic activity, whereby viable cells with an active metabolism reduce the yellow MTT 

tetrazole salts into purple formazan crystals. The formazan crystals were solubilized using 

10%	sodium dodecyl sulfate (SDS), and the fluorescence reading was recorded at 562 nm 

using a microplate reader.  As the conversion relies on the activity of mitochondrial 

oxidoreductase enzymes, it can be directly related to metabolic activity and indirectly 

related to the number of viable cells.  

Figure 4.9 shows the results of the MTT assay recorded at day 3, day 7 and day 14.  

Although the TCPS control did seem to promote a slight increase in metabolic activity 

compared to the PEA fibres at day 3 and day 7, this observation may be attributed to 

reduced cell retention on the PEA fibres at this time point compared to the tissue culture 

plate, which is chemically treated with positive charges to induce electrostatic interactions 
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with the negatively charged cell membrane, thereby maximizing the number of cells which 

initially attach to its surface. Additionally, the absorbance levels between TCPS and PEA 

are similar at day 14, suggesting that the cells retained on the scaffold are continuing to 

grow in a similar manner. Overall, there was no statistical difference in terms of metabolic 

activity between the TCPS control and the PEA fibres at all time points. Statistical 

significance was observed at day 7 and day 14 on PEA fibres and TCPS compared to day 

3 (p <0.05 and p <0.01, respectively). 

 A slight increase in metabolic activity was observed between day 7 and day 14 for both 

the PEA fibres and the TCPS control, although the difference was not statistically 

significant. At this point, the cells may be reaching confluency, due to the small growth 

area (0.32 cm2), the high initial seeding density (10000 cells/scaffold) and the fast doubling 

time of the 10T1/2 cells (16 hours). The combination of these factors may have decreased 

the metabolic activity of the 10T1/2 cells. Overall, this study suggests that the PEA 

scaffolds are not cytotoxic and, based on previous studies,11 that their degradation products 

may not be affecting 10T1/2 cell metabolic activity. 
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Although MTT assays are a relatively quick, inexpensive and well-established assay to 

determine cytocompatibility in 2D cell cultures, they rely on an indirect reading of cell 

viability using mitochondrial activity, and therefore do not provide a direct measurement 

of cell proliferation.146 Furthermore, studies have suggested that results are inconsistent 

when translating these studies to 3D cell cultures, as cell metabolism is significantly 

different in 2D environments compared to 3D environments,146,87 and that the diffusivity 

of reagents in 3D is more difficult due to the longer concentration gradient.146 DNA 
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Figure 4.9  10T1/2 metabolic activity on PEA fibres and TCPS positive control. 
Scaffolds were seeded with a cell density of 10000 cells/scaffold on 96 well plates and 
cultured for 3, 7 and 14 days before MTT treatment. Data represents mean ± SD for 
three independent experiments conducted in triplicate. Two-way ANOVA and post-
hoc Tukey comparative tests were used. Solid line coupled with * indicates p <0.05,  
** represents p <0.01. 
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quantification provides a more accurate representation of cell number, and was therefore 

utilized to ascertain the results from the metabolic activity assay observed in Figure 4.9.  

Here, 10T1/2 cells were seeded on electrospun PEA scaffolds affixed to 24-well plates for 

3, 7 and 14 days and fluorescence intensity was recorded following the CyQUANT cell 

proliferation assay. Previous metabolic and proliferation assays using PEA scaffolds used 

short-term cell culture times for their studies (up to 7 days), 11,14 and the statistically 

significant increase in fluorescence between day 3 and day 14 (p<0.01) suggest that 

electrospun PEA scaffolds maintain 10T1/2 cell proliferation over 14 days, further 

confirming that PEA scaffolds support 10T1/2 metabolic activity and proliferation over 14 

days.  

 

 

 

 

 

 

 

 

 

Figure 4.10  10T1/2 cell proliferation on electrospun PEA fibres. Scaffolds were 
seeded with a cell density of 2000 cells/cm2 and cultured for 3, 7 and 14 days before 
performing CyQUANT cell proliferation assay (n=6). One-way ANOVA and post-
hoc Tukey comparative tests were used. Solid line coupled with ** represents               
p <0.01. Absorbance was measured at 480 nm excitation/520 nm emission 
wavelengths. 
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4.3.2 10T1/2 cell interactions with electrospun PEA fibre mats   

In addition to facilitating cell viability and proliferation, PEA fibres must support cell 

attachment, spreading and infiltration to allow for cellular ingrowth, remodeling and 

eventual formation of in vitro vascular tissue engineered constructs. Given the ability of 

PEA fibres to support 10T1/2 cell viability and proliferation, as observed by the MTT and 

CyQUANT cell proliferation assays, 10T1/2 cell-material interactions were assessed using 

confocal microscopy to understand the influence of the 3D environment on cell attachment, 

spreading and infiltration over 7 days. Here, cells were directly seeded onto glass coverslips 

as well as PEA fibers affixed to a 3 cm dish, and stained for F-actin cytoskeleton using 

phalloidin (red) and nuclei using 4',6-diamidino-2-phenylindole (DAPI) (blue) at day 3 and 

day 7.  

Comparing the two materials at day 3 in Figure 4.11 A & B, 10T1/2 cells seeded on both 

the glass coverslip and the PEA fibres adopted a fibroblast-like morphology with abundant 

F-actin filaments, and promoted similar attachment, spreading and distribution of F-actin 

filaments, confirming previous MTT data which determined no significant difference in 

cell viability between the two surfaces.  
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In Figure 4.11C & D, changes in F-actin distribution patterns and overall 10T1/2 cell 

morphology were observed. 10T1/2 cells typically reach confluency between 5 and 7 days, 

therefore, the lack of available growth area may be contributing to the morphological 

changes observed. In Figure D, the PEA scaffolds are seen by the autofluorescnce in the 

blue channel, and the 10T1/2 cells are displaying increased interaction and infiltration with 
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Figure 4.11  Representative confocal image of 10T1/2 cells cultured on glass coverslips 
(A,B) and electrospun PEA fibres (C, D). Red represents F-actin (phalloidin) and  blue 
represents nuclei (DAPI). Scale bar represents 50 µm 
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the PEA fibres at 7 days. Although the overall spatial F-actin distribution and 10T1/2 cell 

morphology is similar to the cells on the glass coverslip, some 10T1/2 cells, indicated by 

yellow arrows, have maintained the fibroblast-like morphology observed in Figures 4.11 

A and B, as demonstrated by their aligned F-actin distribution, indicating that PEA 

scaffolds may be able to support 10T1/2 cell proliferation for up to 7 days. This observation 

may be due to the increased surface area of the PEA fibres compared to the glass coverslips, 

and the ability of the cells to infiltrate the PEA scaffold. This data is consistent with 

previous studies reporting HCAMSC focal adhesion formation,14 and 10T1/2 cell 

infiltration130 on PEA fibres. Taken together, this data suggests that electrospun PEA fibre 

mats are able to support cell attachment, spreading and increased infiltration for up to 7 

days.  

4.3.3 10T1/2 cell interactions with electrospun tubular PEA scaffolds 

The favorable 10T1/2 cell interactions with electrospun PEA fibre mats combined with the 

successful electrospinning of randomly oriented fibrous tubular scaffolds enabled the 

preliminary study of 10T1/2 cell interactions with electrospun tubular PEA scaffolds. 

Sterilized 1 cm PEA tubular scaffold segments were placed into a cylindrical glass chamber 

with a stainless steel mandrel placed in the lumen of the scaffold.  

 

10T1/2 cells were resuspended in media containing collagen I prior to seeding on the 

abluminal side of the scaffold, and placed in the incubator at 37 oC to allow for cell 

attachment. The scaffolds were then transferred to a tissue culture flask for 3 days of static 

pre-culture. The 3 day static culture was either transferred to the bioreactor for 4 days of 

dynamic culture (dynamic) or 4 days of static culture in the incubator both at 37 oC. 
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The bioreactor setup shown in Figure 4.12 was utilized to conduct dynamic culture studies. 

It consisted of four main parts: a chamber, a pulsatile pump to generate pulsatile flow 

through the lumen, a peristaltic pump to provide global circulation of cell culture medium, 

and a reservoir with tubing to feed the cell culture medium into the system. The luminal 

pulsatile and abluminal perfusion flow were utilized to recapitulate shear forces and 

pressures experienced by coronary artery vessels in vivo.  

 

 

Figure 4.12  Dual-pump flow perfusion bioreactor design for 10T1/2 cell interaction and 
infiltration study (Lin and Mequanint, unpublished work)163 
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10T1/2 seeded constructs subjected to dual-pump bioreactor dynamic conditions shown in 

Figures 4.13 B and D, formed a dense layer of 10T1/2 cells on the abluminal surface. Some 

positive DAPI staining below the scaffold surface indicate some cellular infiltration had 

occurred, indicated by white arrows, however it was not sufficient to populate the thicker 

tubular scaffold cross-section.  

 

Overall, this suggests that though the scaffold porosity combined with coronary artery-

mimicking static and hemodynamic forces was not sufficient to allow for homogenous cell 

distribution throughout the construct, the in vitro bioreactor conditions, particularly the 

perfusion of cell culture medium supported increased cell proliferation and expansion 

potential compared to their static counterparts. Previous studies have shown that 

continuous perfusion increases oxygen transport and nutrient diffusion,147,148 with one 

study by Zhao et al. 148 investigating perfusion flow on MSC-seeded on PET fibrous mats, 

showing an increase in MSC cell density over 40 days.  
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As previously mentioned, cell infiltration in electrospun scaffolds is one primary limitation 

that is being actively addressed using post-processing methods such as salt leaching,149 and 

sacrificial polymers,150 both of which are being currently investigated using electrospun 

PEA fibres in our laboratory. This, in conjunction with the processing methods used in this 

work, which produced randomly oriented fibres post-processing should be optimized to 

improve cell infiltration and promote the formation of a three-dimensional in vitro vascular 

construct.  

A 

C D 

B 

Figure 4.13  Representative confocal microscopy images of 10T1/2 cells cultured on tubular 
scaffolds in  static conditions for 7 days (A, C) and static culture for 3 days followed by 
dynamic culture for 4 days (B, D). Green represents F-actin (phalloidin) and blue 
represents nuclei (DAPI) . White arrows indicate cellular infiltration. Scale bar represents 
20	𝛍m 
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4.3.4 Effect of TGF𝛃1 on VSMC differentiation of 10T1/2 cells on electrospun PEA 

fibres 

Given their ability to support 10T1/2 cell attachment, spreading and infiltration, the 

capacity of electrospun PEA fibres to support VSMC differentiation using TGFβ1 was 

assessed using qPCR and Western blot analyses for SM-𝛼-actin and SM- MHC - two 

important VSMC-specific markers which represent early and late stage differentiation, 

respectively. TGFβ1 is a potent cytokine that has been shown to differentiate 10T1/2 cells 

to VSMC in 2D cell cultures.115 TGFβ1 has been shown to modulate the phenotype of 

VSMC cells in 3D culture,88 however, to our knowledge, the in vitro vascular 

differentiation potential of 10T1/2 cells on electrospun 3D scaffolds has not been 

investigated.   

In order to assess the effect of TGFβ1 concentration on VSMC marker gene expression, 

PEA fibres were affixed to 12-well plates, and seeded with 10T1/2 cells, with exogenous 

TGFβ1 growth factor added on day 1. qPCR was conducted after 3 days of cell culture. 

The qPCR data shown in Figure 4.14 demonstrated a significant increase in SM-𝛼-actin 

expression with the addition of 2 ng/mL (p<0.05) and 4 ng/mL TGFβ1 (p<0.01). Late term 

differentiation marker SM-MHC expression reached significant levels only with the 

addition of 4 ng/mL of TGFβ1 (p<0.05). This study has shown that exogenous TGFβ1 

treatment supported an increase in gene expression of VSMC differentiation markers SM-

𝛼-actin and SM-MHC in 10T1/2 cells, with 4 ng/mL significantly increasing expression of 

both markers.  
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Figure 4.14  Quantitative real-time polymerase chain reaction (qPCR) demonstrating 
10T1/2 cell expression of smooth muscle 𝜶-actin (SM-α-actin) and smooth muscle 
myosin heavy chain (SM-MHC) genes on PEA fibres treated with 2 ng/mL and 4 
ng/mL of TGF𝛃1, respectively after 3 days. Results were normalized to GAPDH 
expression. Statistical significance was analyzed using student’s t test ( * indicates           
p < 0.05,  **  indicates p < 0.01)  

 

In order to determine if the successful transcription of VSMC markers can lead to 

translation and subsequent protein expression of early and late markers SM-𝛼-actin and 

SM-MHC, Western blot analysis was carried out after 7 days of cell culture, with 

TGFβ1	added on day 1 and day 4, and displayed in Figure 4.15. In terms of growth factor 

addition, TGFβ1 did not have any significant effect on SM-𝛼-actin expression, while SM-

MHC protein expression was upregulated with the addition of 2 ng/mL of TGFβ1.  

Increasing the TGFβ1 concentration to 4 ng/mL did not appear to have an effect on SM-

MHC expression, however, the efficiency of additional growth factor may have been 

attenuated by the potential presence of TGFβ1 in the FBS growth serum in this particular 

study.151  Although the data is limited to draw a comprehensive conclusion from this study, 
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the increase in SM-MHC expression observed suggests that treatment with 2 ng/mL of 

TGFβ1 was sufficient to induce the differentiation of 10T1/2 cells to VSMCs on 

electrospun PEA fibres. 

 

 

Figure 4.15  Western blot demonstrating 10T1/2 expression of smooth muscle- 𝜶-actin 
(SM-𝛂-actin) and myosin heavy chain (SM-MHC) proteins on PEA fibres after 7 
days. 10T1/2 cells were treated with with 2 ng/mL and 4 ng/mL of TGF𝛃1, 
respectively. GAPDH was used as a loading control. 

 

To further confirm 10T1/2 differentiation towards a vascular smooth muscle lineage, 

immunofluorescent staining was performed on 10T1/2 cells cultured on PEA fibres for 7 

days, and pre-treated with 4 ng/mL of TGFβ1. Figure 4.16 presents the staining for SM-

MHC, F-actin and DAPI, where an increase in positive staining for SM-MHC can be 

observed between the control and the TGFβ1 treated scaffold as indicated by the yellow 

arrows, demonstrating the occurrence of VSMC differentiation on TGFβ1-treated PEA 

SM-α-actin 

GAPDH 

SM-MHC 

TGFβ1	(ng/mL) 
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fibres, consistent with the Western blot and qPCR data.  Additionally, the increasing 

number of cells maintaining a fibroblast-like morphology, on TGFβ1-treated scaffolds at 

day 7, suggests that TGFβ1	has may have increased the ability of 10T1/2 cells to maintain 

their proliferative capacity over 7 days.  

 

 

TGFβ1 has been shown to regulate mesenchymal progenitor 10T1/2 cell differentiation in 

2D cell cultures,152 and is one of many useful models to study in vitro VSMC 

differentiation. 15 Though there have been some inconsistencies in SM-MHC expression in 

2D cell cultures,153 the 3D in vitro model using 10T1/2 cells and electrospun PEA fibres 

demonstrated a TGFβ1-induced increase in SM-𝛼-actin and SM-MHC gene expression, 

using qPCR, and SM-MHC protein expression indicated by Western blot and 

immunostaining.  

Control TGFβ1	(4	ng/mL) 

Figure 4.16  Representative confocal microscopy image of 10T1/2 cells treated with 
4 ng/mL TGFβ1 and cultured for 7 days. Green represents F-actin, blue represents 
nuclei and red represents SM-MHC. Scale bar represents 50 µm. 
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Taken together, the results obtained using multiple methodologies, suggested that 10T1/2 

cells treated with TGFβ1 on electrospun PEA fibres were able to support 10T1/2 cell 

differentiation into a vascular smooth muscle lineage, making electrospun PEA scaffolds 

a potential model to fabricate small diameter vascular tissues substitutes for use in 

preclinical testing. 
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Chapter 5  

5 Conclusion and future work 

 Conclusion 

In this study, electrospun PEA scaffolds were investigated for their ability to support 

10T1/2 differentiation to VSMC and for the fabrication of vascular constructs. First, the 

PEA biomaterial derived from L-phenylalanine, 1,4 butanediol and sebacoyl chloride was 

synthesized, and the structure was confirmed by 1H-NMR and GPC. Once synthesized, the 

PEA was electrospun to form 3D fibrous mats and tubular scaffolds. The effect of solution 

concentration was explored for 3D fibrous mats, using three different concentrations, with 

fibres spun at 6% w/w providing a uniform and bead-free fibrous structure. For tubular 

scaffolds, an increase in rotation speed above 150 RPM was found to increase fibre 

directionality, fibre fusion and preferential fibre orientation around one angle, therefore the 

rotation speed of the mandrel was adjusted to 150 RPM to obtain randomly oriented fibres. 

Cytotoxicity and cell proliferation studies indicated that the scaffolds were not cytotoxic 

and supported proliferation over 14 days, while 10T1/2 cell interactions on 3D electrospun 

PEA fibre mats demonstrated cell attachment, spreading and infiltration for up to 7 days. 

The in vitro perfusion bioreactor study showed that although cell infiltration may not have 

been sufficient, the perfusion of cell culture medium supported increased cell proliferation 

and expansion potential compared to tubular constructs cultured under static conditions.  
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Finally, VSMC studies using qPCR, Western blot analysis and immunofluorescent staining 

confirmed the gene and protein expression of early and late VSMC markers SM-𝛼-actin 

and MHC using TGFβ1, suggesting that PEA scaffolds support in vitro VSMC 

differentiation. Overall, the results of this study suggested a potential model to fabricate 

small diameter vascular substitutes for use in preclinical testing. 

 Strengths and limitations 

To our knowledge, this study was the first to investigate 10T1/2 cell differentiation using 

PEAs, which up until now, have largely been investigated using endothelial cells 84 and 

HCASMC.14,11 Additionally, the PEA biomaterial supported favorable interactions 

between PEA fibres and 10T1/2 cells, and facilitated  TGFβ1-induced differentiation of 

10T1/2 cells to VSMCs as observed by the increased VSMC gene and protein expression.  

Although some studies have investigated the use of PEAs as biomaterials for vascular 

tissue engineering, the studies utilized  2D polymer films 154 and electrospun mats 14,11 and 

this study is the first to utilize PEA tubular scaffolds to investigate the effect of pulsatile 

perfusion, luminal flow and mechanical stimulation on vascular cell behavior in a 3D 

environment.  

The primary limitation of this study was the lack of homogenous cell distribution 

throughout the tubular PEA construct even with the use of a bioreactor. Although some 

cellular infiltration was observed, the pore size and porosity of the tubular construct may 

not have been sufficient for the 10T1/2 cells to populate the construct.  
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 Future work 

Future work should investigate techniques to improve cellular infiltration in electrospun 

tubular PEA constructs such leaching (e.g. salt,155 sugars156 or other porogens)  and 

sacrificial polymers.157 These methods, may allow for increased cell density and 

homogenous cell distribution throughout the scaffold which would permit powerful in vitro 

vascular differentiation studies in a 3D environment. This study demonstrated the ability 

for PEAs to support 10T1/2 differentiation and future work should incorporate other stem 

cell sources to engineer vascular constructs which, combined with growth factors and 

bioreactors, may provide a  3D vascular tissue model for preclinical testing, that could also 

potentially be used as a suitable vascular graft. Finally, since this study focused on the 

differentiation of 10T1/2 cells into VSMCs, the response of the cells to vasoactive agents 

needs to be studied. 

 Significance 

This work has demonstrated the ability of electrospun PEA scaffolds to support the 

differentiation of 10T1/2 cells into VSMCs.  As such, this in vitro model of cell 

differentiation on electrospun PEA scaffolds could serve as a potential platform to fabricate 

small-diameter tissue engineered vascular grafts to address the current need for 3D vascular 

tissue models as testing platforms for pharmaceutical158 and intravascular stent testing.159 
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